Unknown

Dataset Information

0

Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers.


ABSTRACT: La(0.7)Sr(0.3)MnO(3) is a conducting ferromagnet at room temperature. Combined with thin SrTiO(3) layers, the resulting heterostructures could be used as highly spin-polarized magnetic-tunnel-junction memories. However, when shrunk to dimensions below an apparent critical thickness, the structures become insulating and ferromagnetic ordering is suppressed. Interface spin and charge modulations are thought to create an interfacial dead layer, thus fundamentally limiting the use of this material in atomic-scale devices. The thickness of this dead layer, and whether it is intrinsic, is still controversial. Here we use atomic-resolution electron spectroscopy to demonstrate that the degradation of the magnetic and transport properties of La(0.7)Sr(0.3)MnO(3)/SrTiO(3) multilayers correlates with atomic intermixing at the interfaces, and the presence of extended two-dimensional cation defects in the La(0.7)Sr(0.3)MnO(3) layers (in contrast to three-dimensional precipitates in thick films). When these extrinsic defects are eliminated, metallic ferromagnetism at room temperature can be stabilized in five-unit-cell-thick manganite layers in superlattices, placing the upper limit for any intrinsic dead layer at two unit cells per interface.

SUBMITTER: Kourkoutis LF 

PROVIDER: S-EPMC2900658 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers.

Kourkoutis L Fitting LF   Song J H JH   Hwang H Y HY   Muller D A DA  

Proceedings of the National Academy of Sciences of the United States of America 20100614 26


La(0.7)Sr(0.3)MnO(3) is a conducting ferromagnet at room temperature. Combined with thin SrTiO(3) layers, the resulting heterostructures could be used as highly spin-polarized magnetic-tunnel-junction memories. However, when shrunk to dimensions below an apparent critical thickness, the structures become insulating and ferromagnetic ordering is suppressed. Interface spin and charge modulations are thought to create an interfacial dead layer, thus fundamentally limiting the use of this material i  ...[more]

Similar Datasets

| S-EPMC6947487 | biostudies-literature
| S-EPMC8093203 | biostudies-literature
| S-EPMC7104399 | biostudies-literature
| S-EPMC4987531 | biostudies-literature
| S-EPMC3986702 | biostudies-other
| S-EPMC8493198 | biostudies-literature
| S-EPMC3693400 | biostudies-literature
| S-EPMC5953920 | biostudies-literature
| S-EPMC7994802 | biostudies-literature
| S-EPMC7353168 | biostudies-literature