Unknown

Dataset Information

0

Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines.


ABSTRACT: Within dendritic spines, actin is presumed to anchor receptors in the postsynaptic density and play numerous roles regulating synaptic transmission. However, the submicron dimensions of spines have hindered examination of actin dynamics within them and prevented live-cell discrimination of perisynaptic actin filaments. Using photoactivated localization microscopy, we measured movement of individual actin molecules within living spines. Velocity of single actin molecules along filaments, an index of filament polymerization rate, was highly heterogeneous within individual spines. Most strikingly, molecular velocity was elevated in discrete, well-separated foci occurring not principally at the spine tip, but in subdomains throughout the spine, including the neck. Whereas actin velocity on filaments at the synapse was substantially elevated, at the endocytic zone there was no enhanced polymerization activity. We conclude that actin subserves spatially diverse, independently regulated processes throughout spines. Perisynaptic actin forms a uniquely dynamic structure well suited for direct, active regulation of the synapse.

SUBMITTER: Frost NA 

PROVIDER: S-EPMC2904347 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines.

Frost Nicholas A NA   Shroff Hari H   Kong Huihui H   Betzig Eric E   Blanpied Thomas A TA  

Neuron 20100701 1


Within dendritic spines, actin is presumed to anchor receptors in the postsynaptic density and play numerous roles regulating synaptic transmission. However, the submicron dimensions of spines have hindered examination of actin dynamics within them and prevented live-cell discrimination of perisynaptic actin filaments. Using photoactivated localization microscopy, we measured movement of individual actin molecules within living spines. Velocity of single actin molecules along filaments, an index  ...[more]

Similar Datasets

| S-EPMC4447372 | biostudies-literature
| S-EPMC17906 | biostudies-literature
| S-EPMC6573413 | biostudies-literature
| S-EPMC5107894 | biostudies-literature
| S-EPMC2947330 | biostudies-literature
| S-EPMC4113311 | biostudies-literature
| S-EPMC8007616 | biostudies-literature
| S-EPMC8886817 | biostudies-literature
| S-EPMC7717903 | biostudies-literature
| S-EPMC4460141 | biostudies-literature