Unknown

Dataset Information

0

Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function.


ABSTRACT:

Background

Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated.

Methodology/principal findings

We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKbeta. In addition, overexpression of DGKbeta in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKbeta, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKbeta but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed.

Conclusions/significance

These results demonstrate that membrane-localized DGKbeta regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory.

SUBMITTER: Shirai Y 

PROVIDER: S-EPMC2904696 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function.

Shirai Yasuhito Y   Kouzuki Takeshi T   Kakefuda Kenichi K   Moriguchi Shigeki S   Oyagi Atsushi A   Horie Kyoji K   Morita Shin-ya SY   Shimazawa Masamitsu M   Fukunaga Kohji K   Takeda Junji J   Saito Naoaki N   Hara Hideaki H  

PloS one 20100715 7


<h4>Background</h4>Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated.<h4>Methodology/principal findings</h4>We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that  ...[more]

Similar Datasets

| S-EPMC2048986 | biostudies-literature
| S-EPMC5482321 | biostudies-literature
| S-EPMC8236519 | biostudies-literature
| S-EPMC1287971 | biostudies-literature
| S-EPMC10350540 | biostudies-literature
| S-EPMC4580562 | biostudies-literature
| S-EPMC2743674 | biostudies-literature
| S-EPMC6470530 | biostudies-literature
| S-EPMC2908473 | biostudies-literature
| S-EPMC6558182 | biostudies-literature