Unknown

Dataset Information

0

A single destabilizing mutation (F9S) promotes concerted unfolding of an entire globular domain in gammaS-crystallin.


ABSTRACT: Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. gammaS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse gammaS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, significant increases in hydrogen/deuterium exchange rates were observed by NMR for all the well-protected beta-sheet core residues throughout the entire N-terminal domain of the mutant protein, resulting in up to a 3.5-kcal/mol reduction in the free energy of the folding/unfolding equilibrium. No difference was detected for the C-terminal domain. At a higher temperature, this effect further increases to allow for a much more uniform exchange rate among the N-terminal core residues and those of the least well-structured surface loops. This suggests a concerted unfolding intermediate of the N-terminal domain, while the C-terminal domain stays intact. Increasing concentrations of guanidinium chloride produced two transitions for the Opj mutant, with an unfolding intermediate at approximately 1 M guanidinium chloride. The consequence of this partial unfolding, whether by elevated temperature or by denaturant, is the formation of thioflavin T staining aggregates, which demonstrated fibril-like morphology by atomic force microscopy. Seeding with the already unfolded protein enhanced the formation of fibrils. The Opj mutant protein provides a model for stress-related unfolding of an essentially normally folded protein and production of aggregates with some of the characteristics of amyloid fibrils.

SUBMITTER: Lee S 

PROVIDER: S-EPMC2904975 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

A single destabilizing mutation (F9S) promotes concerted unfolding of an entire globular domain in gammaS-crystallin.

Lee Soojin S   Mahler Bryon B   Toward Jodie J   Jones Blake B   Wyatt Keith K   Dong Lijin L   Wistow Graeme G   Wu Zhengrong Z  

Journal of molecular biology 20100409 2


Conformational change and aggregation of native proteins are associated with many serious age-related and neurological diseases. gammaS-Crystallin is a highly stable, abundant structural component of vertebrate eye lens. A single F9S mutation in the N-terminal domain of mouse gammaS-crystallin causes the severe Opj cataract, with disruption of cellular organization and appearance of fibrillar structures in the lens. Although the mutant protein has a near-native fold at room temperature, signific  ...[more]

Similar Datasets

| S-EPMC2253261 | biostudies-literature
| S-EPMC3411113 | biostudies-literature
| S-EPMC3896421 | biostudies-literature
| S-EPMC3551895 | biostudies-literature
| S-EPMC2203347 | biostudies-literature
| S-EPMC4930773 | biostudies-literature
| S-EPMC2726422 | biostudies-literature
| S-EPMC16532 | biostudies-literature
| S-EPMC8163379 | biostudies-literature
| S-EPMC10846692 | biostudies-literature