Unknown

Dataset Information

0

Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons.


ABSTRACT: Estradiol enhances the formation of dendritic spines and excitatory synapses in hippocampal neurons in vitro and in vivo, but the underlying mechanisms are not fully understood. Kalirin-7 (Kal7), the major isoform of Kalirin in the adult hippocampus, is a Rho GDP/GTP exchange factor localized to postsynaptic densities. In the hippocampus, both Kal7 and estrogen receptor ? (ER?) are highly expressed in a subset of interneurons. Over-expression of Kal7 caused an increase in spine density and size in hippocampal neurons. To determine whether Kalirin might play a role in the effects of estradiol on spine formation, Kal7 expression was examined in the hippocampus of ovariectomized rats. Estradiol replacement increased Kal7 staining in both CA1 pyramidal neurons and interneurons in ovariectomized rats. Estradiol treatment of cultured hippocampal neurons increased Kal7 levels at the postsynaptic side of excitatory synapses and increased the number of excitatory synapses along the dendrites of pyramidal neurons. These increases were mediated via ER? because a selective ER? agonist, but not a selective ER? agonist, caused a similar increase in both Kal7 levels and excitatory synapse number in cultured hippocampal neurons. When Kal7 expression was reduced using a Kal7-specific shRNA, the density of excitatory synapses was reduced and estradiol was no longer able to increase synapse formation. Expression of exogenous Kal7 in hippocampal interneurons resulted in decreased levels of GAD65 staining. Inhibition of GABAergic transmission with bicuculline produced a robust increase in Kal7 expression. These studies suggest Kal7 plays a key role in the mechanisms of estradiol-mediated synaptic plasticity.

SUBMITTER: Ma XM 

PROVIDER: S-EPMC2911517 | biostudies-literature | 2011 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons.

Ma Xin-Ming XM   Huang Jian-Ping JP   Kim Eun-Ji EJ   Zhu Qing Q   Kuchel George A GA   Mains Richard E RE   Eipper Betty A BA  

Hippocampus 20100323 6


Estradiol enhances the formation of dendritic spines and excitatory synapses in hippocampal neurons in vitro and in vivo, but the underlying mechanisms are not fully understood. Kalirin-7 (Kal7), the major isoform of Kalirin in the adult hippocampus, is a Rho GDP/GTP exchange factor localized to postsynaptic densities. In the hippocampus, both Kal7 and estrogen receptor α (ERα) are highly expressed in a subset of interneurons. Over-expression of Kal7 caused an increase in spine density and size  ...[more]

Similar Datasets

| S-EPMC2570025 | biostudies-literature
| S-EPMC10508768 | biostudies-literature
| S-EPMC1948936 | biostudies-literature
| S-EPMC5777005 | biostudies-literature
| S-EPMC8182408 | biostudies-literature
| S-EPMC3022306 | biostudies-other
| S-EPMC6730307 | biostudies-literature
| S-EPMC2727717 | biostudies-literature
| S-EPMC7366740 | biostudies-literature
| S-EPMC8385910 | biostudies-literature