Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques.
Ontology highlight
ABSTRACT: The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however, addition of Ca(2+) and Fe(3+) induced significant reversible bridging (work of adhesion W(ad) approximately 0.3 mJ/m(2) to 2.2 mJ/m(2)) between two films at 0.35 m salinity. The strongest observed Fe(3+)-mediated bridging approaches the adhesion of oriented avidin-biotin complexes. Raman microscopy of plaque sections supports the co-localization of Mfp-2 and iron, which interact by forming bis- or tris-DOPA-iron complexes. Mfp-2 adhered strongly to Mfp-5, a DOPA-rich interfacial adhesive protein, but not to another interfacial protein, Mfp-3, which may in fact displace Mfp-2 from mica. In the presence of metal ions or Mfp-5, Mfp-2 adhesion was fully reversible. These results suggest that plaque cohesiveness depends on Mfp-2 complexation of metal ions, particularly Fe(3+) and also by Mfp-2 interaction with Mfp-5 at the plaque-substratum interface.
SUBMITTER: Hwang DS
PROVIDER: S-EPMC2919147 | biostudies-literature | 2010 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA