C-Ret-mediated hearing loss in mice with Hirschsprung disease.
Ontology highlight
ABSTRACT: A significantly increased risk for dominant sensorineural deafness in patients who have Hirschsprung disease (HSCR) caused by endothelin receptor type B and SOX10 has been reported. Despite the fact that c-RET is the most frequent causal gene of HSCR, it has not been determined whether impairments of c-Ret and c-RET cause congenital deafness in mice and humans. Here, we show that impaired phosphorylation of c-Ret at tyrosine 1062 causes HSCR-linked syndromic congenital deafness in c-Ret knockin (KI) mice. The deafness involves neurodegeneration of spiral ganglion neurons (SGNs) with not only impaired phosphorylation of Akt and NF-kappaB but decreased expression of calbindin D28k in inner ears. The congenital deafness involving neurodegeneration of SGNs in c-Ret KI mice was rescued by introducing constitutively activated RET. Taken together with our results for three patients with congenital deafness with c-RET-mediated severe HSCR, our results indicate that c-Ret and c-RET are a deafness-related molecule in mice and humans.
SUBMITTER: Ohgami N
PROVIDER: S-EPMC2919946 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA