Unknown

Dataset Information

0

CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex.


ABSTRACT: Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1 directly interacts with and regulates the activity of the synaptic chaperones Hsc70, CSP and alphaSGT. CHL1, Hsc70, CSP and alphaSGT form predominantly CHL1/Hsc70/alphaSGT and CHL1/CSP complexes in synapses. Among the various complexes formed by CHL1, Hsc70, CSP and alphaSGT, SNAP25 and VAMP2 induce chaperone activity only in CHL1/Hsc70/alphaSGT and CHL1/CSP complexes, respectively, indicating a remarkable selectivity of a presynaptic chaperone activity for proteins of the exocytotic machinery. In mice with genetic ablation of CHL1, chaperone activity in synapses is reduced and the machinery for synaptic vesicle exocytosis and, in particular, the SNARE complex is unable to sustain prolonged synaptic activity. Thus, we reveal a novel role for a cell adhesion molecule in selective activation of the presynaptic chaperone machinery.

SUBMITTER: Andreyeva A 

PROVIDER: S-EPMC2920317 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex.

Andreyeva Aksana A   Leshchyns'ka Iryna I   Knepper Michael M   Betzel Christian C   Redecke Lars L   Sytnyk Vladimir V   Schachner Melitta M  

PloS one 20100811 8


Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1 directly interacts with and regulates the activity of the synaptic chaperones Hsc70, CSP and alphaSGT. CHL1, Hsc70, CSP and alphaSGT form predom  ...[more]

Similar Datasets

| S-EPMC8900292 | biostudies-literature
| S-EPMC5471617 | biostudies-literature
| S-EPMC10578080 | biostudies-literature
| S-EPMC6377469 | biostudies-literature
| S-EPMC2858212 | biostudies-literature
| S-EPMC3569727 | biostudies-literature
| S-EPMC4607316 | biostudies-literature
| S-EPMC2854664 | biostudies-literature
| S-EPMC7284068 | biostudies-literature
| S-EPMC2785640 | biostudies-literature