Unknown

Dataset Information

0

WASP family proteins: their evolution and its physiological implications.


ABSTRACT: WASP family proteins control actin polymerization by activating the Arp2/3 complex. Several subfamilies exist, but their regulation and physiological roles are not well understood, nor is it even known if all subfamilies have been identified. Our extensive search reveals few novel WASP family proteins. The WASP, WASH, and SCAR/WAVE subfamilies are evolutionarily ancient, with WASH the most universally present, whereas WHAMM/JMY first appears in invertebrates. An unusual Dictyostelium WASP homologue that has lost the WH1 domain has retained its function in clathrin-mediated endocytosis, demonstrating that WASPs can function with a remarkably diverse domain topology. The WASH and SCAR/WAVE regulatory complexes are much more rigidly maintained; their domain topology is highly conserved, and all subunits are present or lost together, showing that the complexes are ancient and functionally interdependent. Finally, each subfamily has a distinctive C motif, indicating that this motif plays a specific role in each subfamily's function, unlike the generic V and A motifs. Our analysis identifies which features are universally conserved, and thus essential, and which are branch-specific modifications. It also shows the WASP family is more widespread and diverse than currently appreciated and unexpectedly biases the physiological role of the Arp2/3 complex toward vesicle traffic.

SUBMITTER: Veltman DM 

PROVIDER: S-EPMC2921111 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

WASP family proteins: their evolution and its physiological implications.

Veltman Douwe M DM   Insall Robert H RH  

Molecular biology of the cell 20100623 16


WASP family proteins control actin polymerization by activating the Arp2/3 complex. Several subfamilies exist, but their regulation and physiological roles are not well understood, nor is it even known if all subfamilies have been identified. Our extensive search reveals few novel WASP family proteins. The WASP, WASH, and SCAR/WAVE subfamilies are evolutionarily ancient, with WASH the most universally present, whereas WHAMM/JMY first appears in invertebrates. An unusual Dictyostelium WASP homolo  ...[more]

Similar Datasets

| S-EPMC9357188 | biostudies-literature
| S-EPMC133613 | biostudies-literature
| S-EPMC2718491 | biostudies-literature
| S-EPMC3017724 | biostudies-literature
2013-06-16 | GSE23429 | GEO
2013-06-16 | E-GEOD-23429 | biostudies-arrayexpress
| S-EPMC5800805 | biostudies-literature
| S-EPMC1239894 | biostudies-literature
| S-EPMC7913133 | biostudies-literature
| S-EPMC3298513 | biostudies-other