Unknown

Dataset Information

0

Learning-dependent plasticity with and without training in the human brain.


ABSTRACT: Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.

SUBMITTER: Zhang J 

PROVIDER: S-EPMC2922179 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Learning-dependent plasticity with and without training in the human brain.

Zhang Jiaxiang J   Kourtzi Zoe Z  

Proceedings of the National Academy of Sciences of the United States of America 20100713 30


Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statist  ...[more]

Similar Datasets

| S-EPMC6202049 | biostudies-literature
| S-EPMC3997347 | biostudies-literature
| S-EPMC5565407 | biostudies-literature
| S-EPMC6870389 | biostudies-literature
| S-EPMC6936363 | biostudies-literature
| S-EPMC5354321 | biostudies-literature
| S-EPMC5509735 | biostudies-literature
| S-EPMC10550286 | biostudies-literature
| S-EPMC8213952 | biostudies-literature
| S-EPMC1779760 | biostudies-literature