Unknown

Dataset Information

0

The QKI-6 RNA binding protein regulates actin-interacting protein-1 mRNA stability during oligodendrocyte differentiation.


ABSTRACT: The quaking viable (qk(v)) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qk(v) mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorganizing the cytoskeleton or process outgrowth during OL maturation and differentiation. Here, we identify the actin-interacting protein (AIP)-1 mRNA as a target of QKI-6 by using two-dimensional differential gel electrophoresis. The AIP-1 mRNA contains a consensus QKI response element within its 3'-untranslated region that, when bound by QKI-6, decreases the half-life of the AIP-1 mRNA. Although the expression of QKI-6 is known to increase during OL differentiation and CNS myelination, we show that this increase is paralleled with a corresponding decrease in AIP-1 expression in rat brains. Furthermore, qk(v)/qk(v) mice that lack QKI-6 and QKI-7 within its OLs had an increased level of AIP-1 in OLs. Moreover, primary rat OL precursors harboring an AIP-1 small interfering RNA display defects in OL process outgrowth. Our findings suggest that the QKI RNA-binding proteins regulate OL differentiation by modulating the expression of AIP-1.

SUBMITTER: Doukhanine E 

PROVIDER: S-EPMC2929996 | biostudies-literature | 2010 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

The QKI-6 RNA binding protein regulates actin-interacting protein-1 mRNA stability during oligodendrocyte differentiation.

Doukhanine Evgueni E   Gavino Christina C   Haines Jeffery D JD   Almazan Guillermina G   Richard Stéphane S  

Molecular biology of the cell 20100714 17


The quaking viable (qk(v)) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qk(v) mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorganizing the cytoskeleton or process outgrowth during OL maturation and differentiation. Here, we identif  ...[more]

Similar Datasets

| S-EPMC2663423 | biostudies-literature
| S-EPMC4403190 | biostudies-literature
| S-EPMC5386729 | biostudies-literature
| S-EPMC3565470 | biostudies-literature
| S-EPMC3190721 | biostudies-literature
| S-EPMC1464365 | biostudies-literature
| S-EPMC3006324 | biostudies-literature
| S-EPMC8113354 | biostudies-literature
| S-EPMC5955916 | biostudies-literature
| S-EPMC3492236 | biostudies-literature