Unknown

Dataset Information

0

Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria.


ABSTRACT: Potassium fluxes integrate mitochondria into cellular activities, controlling their volume homeostasis and structural integrity in many pathophysiological mechanisms. The outer mitochondrial membrane (OMM) is thought to play a passive role in this process because K(+) is believed to equilibrate freely between the cytosol and mitochondrial intermembrane space. By patch clamping mitochondria isolated from the central nervous systems of adult mitoCFP transgenic mice, we discovered the existence of I(OMMKi), a novel voltage-dependent inwardly rectifying K(+) conductance located in the OMM. I(OMMKi) is regulated by osmolarity, potentiated by cAMP, and activated at physiological negative potentials, allowing K(+) to enter the mitochondrial intermembrane space in a controlled regulated fashion. The identification of I(OMMKi) in the OMM supports the notion that a membrane potential could exist across this membrane in vivo and suggests that the OMM possesses regulated pathways for K(+) uptake.

SUBMITTER: Fieni F 

PROVIDER: S-EPMC2930739 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria.

Fieni Francesca F   Parkar Anjum A   Misgeld Thomas T   Kerschensteiner Martin M   Lichtman Jeff W JW   Pasinelli Piera P   Trotti Davide D  

The Journal of biological chemistry 20100615 35


Potassium fluxes integrate mitochondria into cellular activities, controlling their volume homeostasis and structural integrity in many pathophysiological mechanisms. The outer mitochondrial membrane (OMM) is thought to play a passive role in this process because K(+) is believed to equilibrate freely between the cytosol and mitochondrial intermembrane space. By patch clamping mitochondria isolated from the central nervous systems of adult mitoCFP transgenic mice, we discovered the existence of  ...[more]

Similar Datasets

| S-EPMC2613039 | biostudies-literature
| S-EPMC2823846 | biostudies-literature
| S-EPMC9108107 | biostudies-literature
| S-EPMC5785497 | biostudies-literature
| S-EPMC5391746 | biostudies-literature
| S-EPMC44174 | biostudies-other
| S-EPMC4946915 | biostudies-literature
| S-EPMC7786246 | biostudies-literature
| S-EPMC5615076 | biostudies-literature
| S-EPMC6247517 | biostudies-literature