Ontology highlight
ABSTRACT: Background
In Drosophila muscle cell fusion takes place both during the formation of the somatic mesoderm and the visceral mesoderm, giving rise to the skeletal muscles and the gut musculature respectively. The core process of myoblast fusion is believed to be similar for both organs. The actin cytoskeleton regulator Verprolin acts by binding to WASP, which in turn binds to the Arp2/3 complex and thus activates actin polymerization. While Verprolin has been shown to be important for somatic muscle cell fusion, the function of this protein in visceral muscle fusion has not been determined.Results
Verprolin is specifically expressed in the fusion competent myoblasts of the visceral mesoderm, suggesting a role in visceral mesoderm fusion. We here describe a novel Verprolin mutant allele which displays subtle visceral mesoderm fusion defects in the form of mislocalization of the immunoglobulin superfamily molecule Duf/Kirre, which is required on the myoblast cell surface to facilitate attachment between cells that are about to fuse, indicating a function for Verprolin in visceral mesoderm fusion. We further show that Verprolin mutant cells are capable of both migrating and fusing and that the WASP-binding domain of Verprolin is required for rescue of the Verprolin mutant phenotype.Conclusions
Verprolin is expressed in the visceral mesoderm and plays a role in visceral muscle fusion as shown by mislocalization of Duf/Kirre in the Verprolin mutant, however it is not absolutely required for myoblast fusion in either the visceral or the somatic mesoderm.
SUBMITTER: Eriksson T
PROVIDER: S-EPMC2931478 | biostudies-literature | 2010 Aug
REPOSITORIES: biostudies-literature
BMC developmental biology 20100811
<h4>Background</h4>In Drosophila muscle cell fusion takes place both during the formation of the somatic mesoderm and the visceral mesoderm, giving rise to the skeletal muscles and the gut musculature respectively. The core process of myoblast fusion is believed to be similar for both organs. The actin cytoskeleton regulator Verprolin acts by binding to WASP, which in turn binds to the Arp2/3 complex and thus activates actin polymerization. While Verprolin has been shown to be important for soma ...[more]