Arsenic trioxide induces a beclin-1-independent autophagic pathway via modulation of SnoN/SkiL expression in ovarian carcinoma cells.
Ontology highlight
ABSTRACT: Arsenic trioxide (As(2)O(3)), used to treat promyelocytic leukemia, triggers cell death through unknown mechanisms. To further our understanding of As(2)O(3)-induced death, we analyzed its effects on transforming growth factor-? (TGF?) signaling mediators in ovarian cells. Dysregulated TGF? signaling is a characteristic of ovarian cancers. As(2)O(3) reduced the protein expression of EVI1, TAK1, SMAD2/3, and TGF?RII while increasing SnoN/SkiL. EVI1 protein was modulated by treatment with the proteasome inhibitors, MG132 and PS-341/Velcade, suggesting that degradation occurs through the ubiquitin-proteasome pathway. The sensitivity of ovarian cells to As(2)O(3)-induced apoptosis correlated with expression of multidrug resistance protein 1. Interestingly, expression of SnoN was similar to LC3-II (autophagy marker), which increased with induction of cytoplasmic vacuolation preceding apoptosis. These vesicles were identified as autophagosomes based on transmission electron microscopy and immunofluorescence staining with EGFP-LC3. The addition of N-acetyl-L-cysteine (ROS scavenger) to As(2)O(3)-treated cells reversed changes in SnoN protein and the autophagic/apoptotic response. In contrast to beclin-1 knockdown, siRNA targeting ATG5, ATG7, and hVps34 markedly reduced autophagy in As(2)O(3)-treated ovarian carcinoma cells. Further, treatment with SnoN siRNA markedly decreased LC3-II levels and increased PARP degradation (an apoptosis marker). Collectively, these findings suggest that As(2)O(3) induces a beclin-1-independent autophagic pathway in ovarian carcinoma cells and implicates SnoN in promoting As(2)O(3)-mediated autophagic cell survival.
SUBMITTER: Smith DM
PROVIDER: S-EPMC2932795 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA