Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors.
Ontology highlight
ABSTRACT: Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation assays and mammary-specific genes as models, we show here that extracellular matrix molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the beta- and gamma-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both beta- and gamma-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. Chromatin immunoprecipitation analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Co-immunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, CCAAT/enhancer-binding protein beta, and glucocorticoid receptor. Thus, extracellular matrix- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.
SUBMITTER: Xu R
PROVIDER: S-EPMC2933196 | biostudies-literature | 2007 May
REPOSITORIES: biostudies-literature
ACCESS DATA