Unknown

Dataset Information

0

Regulation of sodium-calcium exchanger activity by creatine kinase under energy-compromised conditions.


ABSTRACT: Na(+)/Ca(2+) exchanger (NCX) is one of the major mechanisms for removing Ca(2+) from the cytosol especially in cardiac myocytes and neurons, where their physiological activities are triggered by an influx of Ca(2+). NCX contains a large intracellular loop (NCXIL) that is responsible for regulating NCX activity. Recent evidence has shown that proteins, including kinases and phosphatases, associate with NCX1IL to form a NCX1 macromolecular complex. To search for the molecules that interact with NCX1IL and regulate NCX1 activity, we used the yeast two-hybrid method to screen a human heart cDNA library and found that the C-terminal region of sarcomeric mitochondrial creatine kinase (sMiCK) interacted with NCX1IL. Moreover, both sMiCK and the muscle-type creatine kinase (CKM) coimmunoprecipitated with NCX1 using lysates of cardiacmyocytes and HEK293T cells that transiently expressed NCX1 and various creatine kinases. Both sMiCK and CKM were able to produce a recovery in the decreased NCX1 activity that was lost under energy-compromised conditions. This regulation is mediated through a putative PKC phosphorylation site of sMiCK and CKM. The autophosphorylation and the catalytic activity of sMiCK and CKM are not required for their regulation of NCX1 activity. Our results suggest a novel mechanism for the regulation of NCX1 activity.

SUBMITTER: Yang YC 

PROVIDER: S-EPMC2934692 | biostudies-literature | 2010 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulation of sodium-calcium exchanger activity by creatine kinase under energy-compromised conditions.

Yang Ya-Chi YC   Fann Ming-Ji MJ   Chang Wen-Hsin WH   Tai Long-Hao LH   Jiang Jhih-Hang JH   Kao Lung-Sen LS  

The Journal of biological chemistry 20100624 36


Na(+)/Ca(2+) exchanger (NCX) is one of the major mechanisms for removing Ca(2+) from the cytosol especially in cardiac myocytes and neurons, where their physiological activities are triggered by an influx of Ca(2+). NCX contains a large intracellular loop (NCXIL) that is responsible for regulating NCX activity. Recent evidence has shown that proteins, including kinases and phosphatases, associate with NCX1IL to form a NCX1 macromolecular complex. To search for the molecules that interact with NC  ...[more]

Similar Datasets

| S-EPMC3951392 | biostudies-literature
| S-EPMC4746289 | biostudies-literature
| S-EPMC2679901 | biostudies-literature
| S-EPMC3323054 | biostudies-literature
| S-EPMC2172388 | biostudies-literature
| S-EPMC3448280 | biostudies-literature
| S-EPMC11237548 | biostudies-literature
| S-EPMC10550945 | biostudies-literature
| S-EPMC3535175 | biostudies-literature
2020-08-12 | GSE135172 | GEO