Unknown

Dataset Information

0

OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas.


ABSTRACT: OTX2 is a developmentally regulated transcription factor involved in early morphogenesis of the central nervous system. This gene is amplified and overexpressed in medulloblastoma cell lines, but the nature and extent of its genetic alterations in primary tumors have not been evaluated. Analysis of a large cohort of primary medulloblastomas revealed frequent focal copy number gain of a region minimally containing OTX2 as a single gene. OTX2 copy number gain was restricted to tumor subtypes that did not express a molecular signature of Wnt or Shh pathway activation. FISH analysis revealed copy number gain in a subset of cells within medulloblastoma samples, suggesting a late event in tumor progression. Gain of OTX2 copy number was associated with the presence of anaplastic histologic features and shorter survival in medulloblastoma patients. In support of a functional role, ectopic OTX2 expression enhanced proliferation and tumorigenicity of immortalized primary cells, whereas OTX2 knockdown in medulloblastoma cells prolonged the survival of animals bearing xenograft tumors. Mechanistic investigations revealed upregulation of MYC as a potential mechanism whereby OTX2 promotes tumor progression. Our findings define OTX2 as an important oncogenic driver in medulloblastoma.

SUBMITTER: Adamson DC 

PROVIDER: S-EPMC2943736 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas.

Adamson David C DC   Shi Qun Q   Wortham Matthew M   Northcott Paul A PA   Di Chunhui C   Duncan Christopher G CG   Li Jianjun J   McLendon Roger E RE   Bigner Darell D DD   Taylor Michael D MD   Yan Hai H  

Cancer research 20091222 1


OTX2 is a developmentally regulated transcription factor involved in early morphogenesis of the central nervous system. This gene is amplified and overexpressed in medulloblastoma cell lines, but the nature and extent of its genetic alterations in primary tumors have not been evaluated. Analysis of a large cohort of primary medulloblastomas revealed frequent focal copy number gain of a region minimally containing OTX2 as a single gene. OTX2 copy number gain was restricted to tumor subtypes that  ...[more]

Similar Datasets

| S-EPMC6087714 | biostudies-literature
| S-EPMC7654723 | biostudies-literature
| S-EPMC5941618 | biostudies-literature
| S-EPMC6078208 | biostudies-literature
| S-EPMC6529984 | biostudies-literature
| S-EPMC9637613 | biostudies-literature
2015-12-31 | GSE50765 | GEO
| S-EPMC4386991 | biostudies-literature
| S-EPMC10158119 | biostudies-literature
2015-12-31 | E-GEOD-50765 | biostudies-arrayexpress