Context dependence and coevolution among amino acid residues in proteins.
Ontology highlight
ABSTRACT: As complete genomes accumulate and the generation of genomic biodiversity proceeds at an accelerating pace, the need to understand the interaction between sequence evolution and protein structure and function rises in prominence. The pattern and pace of substitutions in proteins can provide important clues to functional importance, functional divergence, and adaptive response. Coevolution between amino acid residues and the context dependence of the evolutionary process are often ignored, however, because of their complexity, but they are critical for the accurate interpretation of reconstructed evolutionary events. Because residues interact with one another, and because the effect of substitutions can depend on the structural and physiological environment in which they occur, an accurate science of evolutionary functional genomics and a complete understanding of selection in proteins require a better understanding of how context dependence affects protein evolution. Here, we present new evidence from vertebrate cytochrome oxidase sequences that pairwise coevolutionary interactions between protein residues are highly dependent on tertiary and secondary structure. We also discuss theoretical predictions that impinge on our expectations of how protein residues may interact over long distances because of their shared need to maintain protein stability.
SUBMITTER: Wang ZO
PROVIDER: S-EPMC2943952 | biostudies-literature | 2005
REPOSITORIES: biostudies-literature
ACCESS DATA