Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia.
Ontology highlight
ABSTRACT: Activation-induced cytidine deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center (GC) B cells. Occasionally, AID can target non-Ig genes and thereby promote GC B-cell lymphomagenesis. We recently showed that the oncogenic BCR-ABL1 kinase induces aberrant expression of AID in pre-B acute lymphoblastic leukemia (ALL) and lymphoid chronic myelogenous leukemia blast crisis. To elucidate the biological significance of aberrant AID expression, we studied loss of AID function in a murine model of BCR-ABL1 ALL. Mice transplanted with BCR-ABL1-transduced AID(-/-) bone marrow had prolonged survival compared with mice transplanted with leukemia cells generated from AID(+/+) bone marrow. Consistent with a causative role of AID in genetic instability, AID(-/-) leukemia had a lower frequency of amplifications and deletions and a lower frequency of mutations in non-Ig genes, including Pax5 and Rhoh compared with AID(+/+) leukemias. AID(-/-) and AID(+/+) ALL cells showed a markedly distinct gene expression pattern, and AID(-/-) ALL cells failed to downregulate a number of tumor-suppressor genes including Rhoh, Cdkn1a (p21), and Blnk (SLP65). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability and aberrant somatic hypermutation, and by negative regulation of tumor-suppressor genes.
SUBMITTER: Gruber TA
PROVIDER: S-EPMC2948648 | biostudies-literature | 2010 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA