Project description:Triatoma infestans is the main vector of Chagas' disease in South America between latitudes 10°S and 46°S. A multilocus microsatellite data set of 836 individuals from 27 populations of T. infestans, from all its range of distribution in Argentina, was analyzed. Our results favor the hypothesis of two independent migration events of colonization in Argentina and secondary contacts. The majority of the populations of the western provinces of Catamarca, La Rioja, San Juan and the west of Cordoba province, had almost no shared ancestry with the rest of the populations analyzed. Probably those populations, belonging to localities close to the Andean region, could have been established by the dispersal line of T. infestans that would have arrived to Argentina through the Andes, whereas most of the rest of the populations analyzed may have derived from the dispersal line of T. infestans in non-Andean lowlands. Among them, those from the provinces of Formosa, Chaco, Santiago del Estero and Santa Fe shared different percentages of ancestry and presented lower degree of genetic differentiation. The migratory movement linked to regional economies and possibly associated with passive dispersal, would allow a higher genetic exchange among these populations of T. infestans. This study, using microsatellite markers, provides a new approach for evaluating the validity of the different hypotheses concerning the evolutionary history of this species. Two major lineages of T. infestans, an Andean and non-Andean, are suggested.
Project description:Titanosaurian sauropod dinosaurs were the most diverse and abundant large-bodied herbivores in the southern continents during the final 30 million years of the Mesozoic Era. Several titanosaur species are regarded as the most massive land-living animals yet discovered; nevertheless, nearly all of these giant titanosaurs are known only from very incomplete fossils, hindering a detailed understanding of their anatomy. Here we describe a new and gigantic titanosaur, Dreadnoughtus schrani, from Upper Cretaceous sediments in southern Patagonia, Argentina. Represented by approximately 70% of the postcranial skeleton, plus craniodental remains, Dreadnoughtus is the most complete giant titanosaur yet discovered, and provides new insight into the morphology and evolutionary history of these colossal animals. Furthermore, despite its estimated mass of about 59.3 metric tons, the bone histology of the Dreadnoughtus type specimen reveals that this individual was still growing at the time of death.
Project description:BackgroundFifty years of residual insecticide spraying to control Triatoma infestans in the Gran Chaco region of northern Argentina, Paraguay and Bolivia shows that vertically coordinated interventions aiming at full coverage have limited effects and are unsustainable. We quantified the spatial distribution of T. infestans domestic infestation at the district level, identified environmental factors associated with high infestation and then explored the usefulness of risk maps for the spatial stratification of interventions.Methods and findingsWe performed spatial analyses of house infestation data collected by the National Chagas Service in Moreno Department, northern Argentina (1999-2002). Clusters of high domestic infestation occurred in the southwestern extreme of the district. A multi-model selection approach showed that domestic infestation clustered in areas of low elevation, with few farmlands, high density of rural houses, high mean maximum land surface temperature, large NDVI, and high percentage of degraded and deforested lands. The best model classified 98.4% of the communities in the training dataset (sensitivity, 93.3%; specificity, 95.4%). The risk map evidenced that the high-risk area only encompassed 16% of the district. By building a network-based transportation model we assessed the operational costs of spatially contiguous and spatially targeted interventions. Targeting clusters of high infestation would have reached -80% of all communities slated for full-coverage insecticide spraying, reducing in half the total time and economic cost incurred by a spatially contiguous strategy.Conclusions and significanceIn disperse rural areas where control programs can accomplish limited coverage, consideration of infestation hot spots can contribute to the design and execution of cost-effective interventions against Chagas disease vectors. If field validated, targeted vertical control in high risk areas and horizontal control in medium to low risk areas may provide both a logistically and economically feasible alternative to blanket vertical insecticide spraying when resources are limited.
Project description:BackgroundThe host species composition in a household and their relative availability affect the host-feeding choices of blood-sucking insects and parasite transmission risks. We investigated four hypotheses regarding factors that affect blood-feeding rates, proportion of human-fed bugs (human blood index), and daily human-feeding rates of Triatoma infestans, the main vector of Chagas disease.MethodsA cross-sectional survey collected triatomines in human sleeping quarters (domiciles) of 49 of 270 rural houses in northwestern Argentina. We developed an improved way of estimating the human-feeding rate of domestic T. infestans populations. We fitted generalized linear mixed-effects models to a global model with six explanatory variables (chicken blood index, dog blood index, bug stage, numbers of human residents, bug abundance, and maximum temperature during the night preceding bug catch) and three response variables (daily blood-feeding rate, human blood index, and daily human-feeding rate). Coefficients were estimated via multimodel inference with model averaging.FindingsMedian blood-feeding intervals per late-stage bug were 4.1 days, with large variations among households. The main bloodmeal sources were humans (68%), chickens (22%), and dogs (9%). Blood-feeding rates decreased with increases in the chicken blood index. Both the human blood index and daily human-feeding rate decreased substantially with increasing proportions of chicken- or dog-fed bugs, or the presence of chickens indoors. Improved calculations estimated the mean daily human-feeding rate per late-stage bug at 0.231 (95% confidence interval, 0.157-0.305).Conclusions and significanceBased on the changing availability of chickens in domiciles during spring-summer and the much larger infectivity of dogs compared with humans, we infer that the net effects of chickens in the presence of transmission-competent hosts may be more adequately described by zoopotentiation than by zooprophylaxis. Domestic animals in domiciles profoundly affect the host-feeding choices, human-vector contact rates and parasite transmission predicted by a model based on these estimates.
Project description:BackgroundTriatoma infestans -the principal vector of the infection that causes Chagas disease- defies elimination efforts in the Gran Chaco region. This study identifies the types of human-made or -used structures that are key sources of these bugs in the initial stages of house reinfestation after an insecticide spraying campaign.Methodology and principal findingsWe measured demographic and blood-feeding parameters at two geographic scales in 11 rural communities in Figueroa, northwest Argentina. Of 1,297 sites searched in spring, 279 (21.5%) were infested. Bug abundance per site and female fecundity differed significantly among habitat types (ecotopes) and were highly aggregated. Domiciles (human sleeping quarters) had maximum infestation prevalence (38.7%), human-feeding bugs and total egg production, with submaximal values for other demographic and blood-feeding attributes. Taken collectively peridomestic sites were three times more often infested than domiciles. Chicken coops had greater bug abundance, blood-feeding rates, engorgement status, and female fecundity than pig and goat corrals. The host-feeding patterns were spatially structured yet there was strong evidence of active dispersal of late-stage bugs between ecotopes. Two flight indices predicted that female fliers were more likely to originate from kitchens and domiciles, rejecting our initial hypothesis that goat and pig corrals would dominate.Conclusions and significanceChicken coops and domiciles were key source habitats fueling rapid house reinfestation. Focusing control efforts on ecotopes with human-fed bugs (domiciles, storerooms, goat corrals) would neither eliminate the substantial contributions to bug population growth from kitchens, chicken coops, and pig corrals nor stop dispersal of adult female bugs from kitchens. Rather, comprehensive control of the linked network of ecotopes is required to prevent feeding on humans, bug population growth, and bug dispersal simultaneously. Our study illustrates a demographic approach that may be applied to other regions and triatomine species for the design of innovative, improved vector control strategies.