Project description:Typhoid fever is notifiable in South Africa but clinical notification is notoriously poor. South Africa has an estimated annual incidence rate of 0.1 cases per 100,000 population of culture-confirmed typhoid fever, decreased from 17 cases per 100,000 population in the 1980s. This work was undertaken to identify the reasons for this decrease and identify potential weaknesses that may result in an increase of observed cases. Culture-confirmed cases, with additional demographic and clinical data have been collected from selected sentinel sites since 2003. Data on contextual factors (gross domestic product [GDP], sanitation, female education, and childhood diarrhea mortality) were collected. National incidence rates of culture-confirmed typhoid fever have remained constant for the past 13 years, with the exception of an outbreak in 2005: incidence was 0.4 per 100,000 population. Paratyphoid fever remains a rare disease. Antimicrobial susceptibility data suggest resistance to ciprofloxacin and azithromycin is emerging. The South African population increased from 27.5 million in 1980 to 55.0 million in 2015: urbanization increased from 50% to 65%, GDP increased from United States Dollar (USD) $2,910 to USD $6,167, access to sanitation improved from 64.4% to 70.0% in the urban population and 26.4% to 60.5% in rural areas. Female literacy levels improved from 74.8% to 92.6% over the period. Improved socioeconomic circumstances in South Africa have been temporally associated with decreasing incidence rates of typhoid fever over a 35-year period. Ongoing challenges remain including potential for large outbreaks, a large immigrant population, and emerging antimicrobial resistance. Continued active surveillance is mandatory.
Project description:Fluoroquinolones came into widespread use in African countries in the early 2000s, after patents for the first generation of these drugs expired. By that time, quinolone antibacterial agents had been used intensively worldwide and resistant lineages of many bacterial species had evolved. We sought to understand which Gram negative enteric pandemic lineages have been reported from Africa, as well as the nature and transmission of any indigenous resistant clones. A systematic review of articles indexed in the Medline and AJOL literature databases was conducted. We report on the findings of 43 eligible studies documenting local or pandemic fluoroquinolone-resistant enteric clones in sub-Sahara African countries. Most reports are of invasive non-typhoidal Salmonella and Escherichia coli lineages and there have been three reports of cholera outbreaks caused by fluoroquinolone-resistant Vibrio cholerae O1. Fluoroquinolone-resistant clones have also been reported from commensals and animal isolates but there are few data for non-Enterobacteriaceae and almost none for difficult-to-culture Campylobacter spp. Fluoroquinolone-resistant lineages identified in African countries were universally resistant to multiple other classes of antibacterial agents. Although as many as 972 non-duplicate articles refer to fluoroquinolone resistance in enteric bacteria from Africa, most do not report on subtypes and therefore information on the epidemiology of fluoroquinolone-resistant clones is available from only a handful of countries in the subcontinent. When resistance is reported, resistance mechanisms and lineage information is rarely investigated. Insufficient attention has been given to molecular and sequence-based methods necessary for identifying and tracking resistant clones in Africa and more research is needed in this area.
Project description:Resistance to fluoroquinolones (FQ) is being increasingly reported and found to be mediated by efflux pumps, plasmid-mediated quinolone resistance genes (PMQR) and mutations in gyrA, gyrB, parC and parE. However, studies reporting on FQ resistance mechanisms (FQRM), particularly in Africa, are focused mostly on Salmonella. This study used a whole-genome-based approach to describe FQRM in forty-eight clinical Enterobacteriaceae isolates comprising of Klebsiella pneumoniae (n = 21), Serratia marcescens (n = 12), Enterobacter spp. (n = 10), Citrobacter freundii (n = 3), Escherichia coli (n = 1), and Klebsiella michiganensis (n = 1) with reduced susceptibility to FQ in Enterobacteriaceae. All the isolates exhibited exceptionally high-level resistance (MIC of 4-512mg/L) to all three FQs, which could not be reversed by carbonyl cyanide m-chlorophenyl hydrazine (CCCP), verapamil (VRP) or reserpine (RSP). PMQR genes such as oqxAB (n = 43), aac(6')-Ib-cr (n = 28), and qnr(S1, B1, B2, B9, B49, B66) (n = 23) were identified without transposons or integrons in their immediate environments. Multiple and diverse mutations were found in gyrA (including S83I/Y and T/I83I/T), gyrB, parC and parE, which were clonally specific. There were vertical and horizontal transmission of high-level FQ resistance in Enterobacteriaceae in hospitals in Durban, South Africa, which are mediated by efflux, PMQR genes, and gyrA, gyrB, parC and parE mutations.
Project description:There is paucity of data regarding the geographical distribution, incidence, and phylogenetics of multi-drug resistant (MDR) Salmonella Typhi in sub-Saharan Africa. Here we present a phylogenetic reconstruction of whole genome sequenced 249 contemporaneous S. Typhi isolated between 2008-2015 in 11 sub-Saharan African countries, in context of the 2,057 global S. Typhi genomic framework. Despite the broad genetic diversity, the majority of organisms (225/249; 90%) belong to only three genotypes, 4.3.1 (H58) (99/249; 40%), 3.1.1 (97/249; 39%), and 2.3.2 (29/249; 12%). Genotypes 4.3.1 and 3.1.1 are confined within East and West Africa, respectively. MDR phenotype is found in over 50% of organisms restricted within these dominant genotypes. High incidences of MDR S. Typhi are calculated in locations with a high burden of typhoid, specifically in children aged <15 years. Antimicrobial stewardship, MDR surveillance, and the introduction of typhoid conjugate vaccines will be critical for the control of MDR typhoid in Africa.
Project description:Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa.Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates.The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (? 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86).Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.
Project description:The aim of this study was to compare the transcriptional response to TB in regions of different incidence / prevalence. Experimental Design: Whole blood collected in tempus tubes from patients with different spectra of TB disease. All patients were sampled prior to the initiation of any antimycobacterial therapy. Active Pulmonary TB: PTB - All patients confirmed by isolation of Mycobacterium Tuberculosis on culture of sputum. Latent TB: LTB - All patients were screened at a tuberculosis clinic. All were positive by Interferon-Gamma Release assay(IGRA); specifically Quantiferon Gold In-Tube Assay (Cellestis, Australia). Latent patients had no clinical, or microbiological evidence of active infection and were asymptomatic. Experimental Variables: Patient group: Active PTB; Latent TB. There are no healthy controls in this dataset as it was being used for validation only. Controls: Latent TB individuals are used as a control for PTB in this dataset since there are few to no unexposed adult controls in Cape Town.
Project description:BackgroundDrug-resistant tuberculosis threatens recent gains in the treatment of tuberculosis and human immunodeficiency virus (HIV) infection worldwide. A widespread epidemic of extensively drug-resistant (XDR) tuberculosis is occurring in South Africa, where cases have increased substantially since 2002. The factors driving this rapid increase have not been fully elucidated, but such knowledge is needed to guide public health interventions.MethodsWe conducted a prospective study involving 404 participants in KwaZulu-Natal Province, South Africa, with a diagnosis of XDR tuberculosis between 2011 and 2014. Interviews and medical-record reviews were used to elicit information on the participants' history of tuberculosis and HIV infection, hospitalizations, and social networks. Mycobacterium tuberculosis isolates underwent insertion sequence (IS)6110 restriction-fragment-length polymorphism analysis, targeted gene sequencing, and whole-genome sequencing. We used clinical and genotypic case definitions to calculate the proportion of cases of XDR tuberculosis that were due to inadequate treatment of multidrug-resistant (MDR) tuberculosis (i.e., acquired resistance) versus those that were due to transmission (i.e., transmitted resistance). We used social-network analysis to identify community and hospital locations of transmission.ResultsOf the 404 participants, 311 (77%) had HIV infection; the median CD4+ count was 340 cells per cubic millimeter (interquartile range, 117 to 431). A total of 280 participants (69%) had never received treatment for MDR tuberculosis. Genotypic analysis in 386 participants revealed that 323 (84%) belonged to 1 of 31 clusters. Clusters ranged from 2 to 14 participants, except for 1 large cluster of 212 participants (55%) with a LAM4/KZN strain. Person-to-person or hospital-based epidemiologic links were identified in 123 of 404 participants (30%).ConclusionsThe majority of cases of XDR tuberculosis in KwaZulu-Natal, South Africa, an area with a high tuberculosis burden, were probably due to transmission rather than to inadequate treatment of MDR tuberculosis. These data suggest that control of the epidemic of drug-resistant tuberculosis requires an increased focus on interrupting transmission. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
Project description:Background. The bacterial foodborne pathogen Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the postinfectious neuropathies, Guillain-Barré and Miller Fisher syndromes. This study described the use of multilocus sequence typing and DNA microarrays to examine the genetic content of a collection of South African C. jejuni strains, recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. Methodology/Principal Findings. The comparative genomic analysis by using multilocus sequence typing and DNA microarrays demonstrated that the South African strains with Penner heat-stable (HS) serotype HS:41 were clearly distinct from the other South African strains. Further analysis of the DNA microarray data demonstrated that the serotype HS:41 strains from South African GBS and enteritis patients are highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to serotype HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements. Only the genomic integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas absent in the closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both genomic integrated elements CJIE1 and CJIE2. Conclusion/Significance. These findings demonstrated that these C. jejuni integrated elements may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may probably contribute to increasing the genomic diversity of these C. jejuni strains. This comparative genomic analysis of the foodborne pathogen C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks and their sources. Keywords: comparative genomic indexing analysis
Project description:BACKGROUND:Clearly differentiating causes of fever is challenging where diagnostic capacities are limited, resulting in poor patient management. We investigated acute febrile illness in children aged ≤15 years enrolled at healthcare facilities in Butajira, Ethiopia, during January 2012 to January 2014 for the Typhoid Fever Surveillance in Africa Program. METHODS:Blood culture, malaria microscopy, and blood analyses followed by microbiological, biochemical, and antimicrobial susceptibility testing of isolates were performed. We applied a retrospectively developed scheme to classify children as malaria or acute respiratory, gastrointestinal or urinary tract infection, or other febrile infections and syndromes. Incidence rates per 100 000 population derived from the classification scheme and multivariate logistic regression to determine fever predictors were performed. RESULTS:We rarely observed stunting (4/513, 0.8%), underweight (1/513, 0.2%), wasting (1/513, 0.2%), and hospitalization (21/513, 4.1%) among 513 children with mild transient fever and a mean disease severity score of 12 (95% confidence interval [CI], 11-13). Blood cultures yielded 1.6% (8/513) growth of pathogenic agents; microscopy detected 13.5% (69/513) malaria with 20 611/µL blood (95% CI, 15 352-25 870) mean parasite density. Incidences were generally higher in children aged ≤5 years than >5 to ≤15 years; annual incidences in young children were 301.3 (95% CI, 269.2-337.2) for malaria and 1860.1 (95% CI, 1778.0-1946.0) for acute respiratory and 379.9 (95% CI, 343.6-420.0) for gastrointestinal tract infections. CONCLUSIONS:We could not detect the etiological agents in all febrile children. Our findings may prompt further investigations and the reconsideration of policies and frameworks for the management of acute febrile illness.