Unknown

Dataset Information

0

Transcriptional regulation of CXC-ELR chemokines KC and MIP-2 in mouse pancreatic acini.


ABSTRACT: Neutrophils and their chemoattractants, the CXC-ELR chemokines keratinocyte cytokine (KC) and macrophage inflammatory protein-2 (MIP-2), play a critical role in pancreatitis. While acute pancreatitis is initiated in acinar cells, it is unclear if these are a source of CXC-ELR chemokines. KC and MIP-2 have NF-?B, activator protein-1 (AP-1) sites in their promoter regions. However, previous studies have shown increased basal and reduced caerulein-induced AP-1 activation in harvested pancreatic tissue in vitro, which limits interpreting the caerulein-induced response. Moreover, recent studies suggest that NF-?B silencing in acinar cells alone may not be sufficient to reduce inflammation in acute pancreatitis. Thus the aim of this study was to determine whether acinar cells are a source of KC and MIP-2 and to understand their transcriptional regulation. Primary overnight-cultured murine pancreatic acini were used after confirming their ability to replicate physiological and pathological acinar cell responses. Upstream signaling resulting in KC, MIP-2 upregulation was studied along with activation of the transcription factors NF-?B and AP-1. Cultured acini replicated critical responses to physiological and pathological caerulein concentrations. KC and MIP-2 mRNA levels increased in response to supramaximal but not to physiological caerulein doses. This upregulation was calcium and protein kinase C (PKC), but not cAMP, dependent. NF-?B inhibition completely prevented upregulation of KC but not MIP-2. Complete suppression of MIP-2 upregulation required dual inhibition of NF-?B and AP-1. Acinar cells are a likely source of KC and MIP-2 upregulation during pancreatitis. This upregulation is dependent on calcium and PKC. MIP-2 upregulation requires both NF-?B and AP-1 in these cells. Thus dual inhibition of NF-?B and AP-1 may be a more successful strategy to reduce inflammation in pancreatitis than targeting NF-?B alone.

SUBMITTER: Orlichenko LS 

PROVIDER: S-EPMC2957341 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptional regulation of CXC-ELR chemokines KC and MIP-2 in mouse pancreatic acini.

Orlichenko Lidiya S LS   Behari Jaideep J   Yeh Tzu-Hsuan TH   Liu Shiguang S   Stolz Donna B DB   Saluja Ashok K AK   Singh Vijay P VP  

American journal of physiology. Gastrointestinal and liver physiology 20100729 4


Neutrophils and their chemoattractants, the CXC-ELR chemokines keratinocyte cytokine (KC) and macrophage inflammatory protein-2 (MIP-2), play a critical role in pancreatitis. While acute pancreatitis is initiated in acinar cells, it is unclear if these are a source of CXC-ELR chemokines. KC and MIP-2 have NF-κB, activator protein-1 (AP-1) sites in their promoter regions. However, previous studies have shown increased basal and reduced caerulein-induced AP-1 activation in harvested pancreatic tis  ...[more]

Similar Datasets

| S-EPMC2783001 | biostudies-literature
| S-EPMC10296565 | biostudies-literature
| S-EPMC4447957 | biostudies-literature
| S-EPMC2585555 | biostudies-literature
| S-EPMC4034677 | biostudies-literature
| S-EPMC8419473 | biostudies-literature
| S-EPMC7671035 | biostudies-literature
| S-EPMC2766051 | biostudies-literature
| S-EPMC9163960 | biostudies-literature
| S-EPMC3500280 | biostudies-literature