Unknown

Dataset Information

0

A model of tight junction function in central nervous system myelinated axons.


ABSTRACT: The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporating structural features that, hitherto, have not been simulated, we demonstrate that myelin tight junctions (TJs) improve saltatory conduction by reducing current flow through the myelin, limiting axonal membrane depolarization and restraining the activation of ion channels beneath the myelin sheath. Accordingly, our simulations provide a novel view of myelin by which TJs minimize charging of the membrane capacitance and lower the membrane time constant to improve the speed and accuracy of transmission in small diameter fibers. This study establishes possible mechanisms whereby TJs affect conduction in the absence of overt perturbations to myelin architecture and may in part explain the tremor and gait abnormalities observed in Claudin 11-null mice.

SUBMITTER: Gow A 

PROVIDER: S-EPMC2957896 | biostudies-literature | 2008 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A model of tight junction function in central nervous system myelinated axons.

Gow Alexander A   Devaux Jerome J  

Neuron glia biology 20081101 4


The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporati  ...[more]

Similar Datasets

| S-EPMC7424030 | biostudies-literature
| S-EPMC2592840 | biostudies-literature
2022-12-06 | GSE220187 | GEO
| S-EPMC2171943 | biostudies-literature
| S-EPMC6205472 | biostudies-other
2024-04-02 | GSE250415 | GEO
| S-EPMC3971288 | biostudies-literature
| S-EPMC4022608 | biostudies-literature
| S-EPMC6292669 | biostudies-literature
| S-EPMC3701069 | biostudies-literature