Project description:BackgroundSevere fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever with a high fatality rate and high frequency of person-to-person transmission and is caused by SFTSV, a tick-borne Phlebovirus. Because SFTS has similar clinical manifestations and epidemic characters (such as spatial and temporal distributions) with hemorrhagic fever with renal syndrome (HFRS) in China, we reason that SFTS patients might be misdiagnosed as HFRS.Methodology/principal findingsAcute-phase sera of 128 clinically diagnosed HFRS patients were retrospectively analyzed for Hantavirus IgM antibodies with ELISA. Hantavirus-negative patients' sera were further analyzed for SFTSV IgM antibodies with ELISA. ELISA showed that 73 of 128 (57.0%) of clinically diagnosed HFRS patients were IgM antibody positive to Hantaviruses. Among the 55 Hantavirus-IgM negative patients, four (7.3%) were IgM antibody positive to SFTSV. The results indicated that the four SFTS patients were misdiagnosed as HFRS. The misdiagnosed SFTS patients had clinical manifestations common to HFRS and were unable to be differentiated from HFRS clinically.ConclusionsOur study showed that SFTS patients could be clinically misdiagnosed as HFRS. The misdiagnosis of SFTS as HFRS causes particular concern because it may increase the risk of death of SFTS patients and person-to-person transmission of SFTSV without proper care for and isolation of SFTS patients.
Project description:Hemorrhagic fever with renal syndrome (HFRS) is a public health problem in Vladivostok city, Russia. From 1997 to 2019, a study of hantaviruses in Norway rats (Rattus norvegicus), a natural reservoir of Seoul virus (SEOV), and in HFRS patients was conducted. We demonstrated the presence of SEOV in the local population of Norway rats and detected SEOV in 10, Amur virus (AMRV) in 4 and Hantaan virus (HTNV) in 1 out of 15 HFRS patients. Genetic analysis based on partial S, M and L segment sequences revealed that the Russian SEOV strains were related most closely to strains from Cambodia and Vietnam. We postulate that the SEOV strains found in the port city of Vladivostok have been spread from South-East Asia as a result of distribution of rats during standard shipping trade activities. Moreover, we suggest that city residents may have acquired AMRV and HTNV infection during visits to rural areas.
Project description:Hemorrhagic fever with renal syndrome (HFRS), a serious threat to human health, is mainly transmitted by rodents in Eurasia. The risk of disease differs according to sex, age, and occupation. Further, temperature and rainfall have some lagging effects on the occurrence of the disease. The quantitative data for these factors in the Tai'an region of China are still unknown. We used a forest map to calculate the risk of HFRS in different populations and used four different mathematical models to explain the relationship between time factors, meteorological factors, and the disease. The results showed that compared with the whole population, the relative risk in rural medical staff and farmers was 5.05 and 2.00, respectively (p < 0.05). Joinpoint models showed that the number of cases decreased by 33.32% per year from 2005 to 2008 (p < 0.05). The generalized additive model showed that air temperature was positively correlated with disease risk from January to June, and that relative humidity was negatively correlated with risk from July to December. From January to June, with an increase in temperature, after 15 lags, the cumulative risk of disease increased at low temperatures. From July to December, the cumulative risk decreased with an increase in the relative humidity. Rural medical staff, farmers, men, and middle-aged individuals were at a high risk of HFRS. Moreover, air temperature and relative humidity are important factors that affect disease occurrence. These associations show lagged and differing effects according to the season.
Project description:Hemorrhagic fever with renal syndrome (HFRS) is a febrile disorder caused in Korea by the Hantaan and Seoul viruses. Its characteristic clinical manifestations include fever, hemorrhage, and renal failure, but a primary presentation with acute infectious diarrhea is rare. Owing to decreased urine output and renal function, a 54-year-old patient was transferred to our hospital from a local clinic, where he had been receiving treatment for diarrhea occurring more than 10 times a day. The patient was treated in the Gastroenterology Department at our hospital for acute renal failure secondary to inflammatory diarrhea based on the findings of stool leukocytes. An immunofluorescent antibody assay showed a 4-fold increase in the acute-phase antibody titer to Hantavirus during recovery. A nested reverse transcription polymerase chain reaction (RT-nPCR) assay of plasma yielded negative results, but Hantaan virus positivity was confirmed on an RT-nPCR assay of the buffy coat. Another 60-year-old patient with watery diarrhea was treated conservatively for suspected infectious diarrhea. However, an immunofluorescent antibody assay showed a 4-fold increase in the acute-phase HFRS antibody titer. RT-nPCR using plasma yielded negative results, but Seoul virus was detected on an RT-nPCR buffy coat assay, confirming the diagnosis of HFRS. Hemorrhagic fever with renal syndrome can present with gastrointestinal symptoms such as acute diarrhea alone. This report highlights the importance of considering HFRS in the differential diagnosis of patients with acute diarrhea and the need for additional research on the usefulness of the buffy coat in the PCR diagnosis of HFRS.
Project description:Hantaviruses cause 2 zoonotic diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome. Infection is usually initiated after inhalation of virus-contaminated rodent excreta. In addition to the zoonotic infection route, growing evidence suggests person-to-person transmission of Andes virus. For this reason, we studied whether saliva from HFRS patients contained hantavirus. During an outbreak in northern Sweden of nephropathia epidemica (NE), a milder form of hemorrhagic fever with renal syndrome, we collected saliva and plasma from 14 hospitalized NE patients with verified Puumala virus (PUUV) infection. PUUV RNA was detected in saliva from 10 patients (range 1,530-121,323 PUUV RNA copies/mL) by quantitative reverse transcription-PCR. The PUUV S-segment sequences from saliva and plasma of the same patients were identical. Our data show that hantavirus RNA could be detected in human saliva several days after onset of disease symptoms and raise the question whether interhuman transmission of hantavirus may occur through saliva.
Project description:Four US soldiers acquired hemorrhagic fever with renal syndrome while training near the Demilitarized Zone, South Korea, in 2005. Hantaan virus sequences were amplified by reverse transcription-PCR from patient serum samples and from lung tissues of striped field mice (Apodemus agrarius) captured at training sites. Epidemiologic investigations specified the ecology of possible sites of patient infection.
Project description:Rodent-borne hantaviruses cause two severe acute diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia, and hantavirus pulmonary syndrome (HPS; also called hantavirus cardiopulmonary syndrome [HCPS]) in the Americas. Puumala virus (PUUV) is the most common causative agent of HFRS in Europe. Current routine diagnostic methods are based on serological analyses and can yield inconclusive results. Hantavirus-infected patients are viremic during the early phase of disease; therefore, detection of viral RNA genomes can be a valuable complement to existing serological methods. However, the high genomic sequence diversity of PUUV has hampered the development of molecular diagnostics, and currently no real-time reverse transcription-quantitative (RT)-PCR assay is available for routine diagnosis of HFRS. Here, we present a novel PUUV RT-PCR assay. The assay was validated for routine diagnosis of HFRS on samples collected in Sweden during the winter season from 2013 to 2014. The assay allowed detection of PUUV RNA in 98.7% of confirmed clinical HFRS samples collected within 8 days after symptomatic onset. In summary, this study shows that real-time RT-PCR can be a reliable alternative to serological tests during the early phase of HFRS.
Project description:BackgroundHemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses is a serious public health problem in China. The National Notifiable Disease Surveillance System (NNDSS) was established online by China CDC in 2004 and rodent surveillance sites were adjusted to 40 sites in 22 provinces in 2005. Here we analyzed the surveillance data of both human cases and rodents host during 2006-2012 to examine the epidemic trends of HFRS in recent years in China.MethodsRecords on HFRS human cases and surveillance data of rodents host from 2006 to 2012 were analyzed. Phylogenetic tree based on complete sequence of M segment of 58 virus isolates was constructed and analyzed to make a better understanding of the molecular diversity of hantaviruses in China.ResultsDuring 2006-2012, a total of 77558 HFRS human cases and 866 deaths were reported with the average annual incidence rate of 0.83 cases/100,000 population and case fatality rate of 1.13%. 84.16% of the total cases were clustered in 9 provinces and mainly reported in spring and autumn-winter seasons. HFRS incidence in males was over 3 times higher than in females and farmers still accounted for the largest proportion. The average density of rodents was relatively stable from 2006 to 2012. Apodemus agrarius and Rattus norvegicus were predominant in wild field and residential area, respectively. Both hantaviruses carrying and infection rates in rodents had a rapid increase in 2012. Phylogenetic analysis showed that at least six clades of Hantaan virus and five of Seoul virus were prevalent in China.ConclusionHFRS in China was still a natural focal disease with relatively high morbidity and fatality and its distribution and epidemic trends had also changed. Surveillance measures, together with prevention and control strategies should be improved and strengthened to reduce HFRS infection in China.
Project description:Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China, where human cases account for 90 % of the total global cases. Yiyuan County is one of the most serious affected areas in China. Therefore, there is an urgent need for monitoring and predicting HFRS incidence in Yiyuan to make the control of HFRS more effective.The study was based on the reported cases of HFRS from the National Notifiable Disease Surveillance System. The demographic and spatial distributions of HFRS in Yiyuan were established. Then we fit autoregressive integrated moving average (ARIMA) models and predict the HFRS epidemic trend.There were 362 cases reported in Yiyuan during the 10-year study period. The human infections in the fall and winter reflected a seasonal characteristic pattern of Hantaan virus (HTNV) transmission. The best model was ARIMA (2, 1, 1) × (0, 1, 1)12 (AIC value 516.86) with a high validity.The ARIMA model fits the fluctuations in HFRS frequency and it can be used for future forecasting when applied to HFRS prevention and control.
Project description:An effective differentiation between severe fever with thrombocytopenia syndrome and hemorrhagic fever with renal syndrome was attained by a model considering patients' age, mouse/tick contact, presence of blush, low back pain, diarrhea, enlarged lymph nodes, and white blood cell count.