Project description:Growing interest in camelids presents a unique challenge to scientists and veterinarians engaged in diagnosing infectious diseases of this species. It is estimated that 65 % of fatalities in Old World camels (OWC, i.e., Camelus dromedarius and C. bactrianus) and 50 % in New World camelids/South American camelids (NWC/SAC, i.e., the domestic alpaca (Vicugna pacos) and llama (Lama glama)) are caused by infectious diseases. Factors that contribute to disease emergence in camelids involve climate change and increased demand for camel products resulting in the intensification of production and expanding camel contacts with other animal species and humans. In this chapter, the most important emerging diseases of camelids are described and discussed. The most notable emerging viral infections in OWC include camelpox, Rift Valley fever (RVF), peste des petits ruminants (PPR), and Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Brucellosis, Johne’s disease (JD), and dermatophilosis are the emerging bacterial diseases in OWC. Emerging diseases of NWC include infections with bovine viral diarrhea virus (BVDV), bluetongue (BT), and coronavirus. Parasitic emerging infections in NWCs include the small liver fluke (Dicrocoelium dendriticum) and meningeal worm (Parelaphostrongylus tenuis).
Project description:BackgroundFor many emerging or re-emerging pathogens, cases in humans arise from a mixture of introductions (via zoonotic spillover from animal reservoirs or geographic spillover from endemic regions) and secondary human-to-human transmission. Interventions aiming to reduce incidence of these infections can be focused on preventing spillover or reducing human-to-human transmission, or sometimes both at once, and typically are governed by resource constraints that require policymakers to make choices. Despite increasing emphasis on using mathematical models to inform disease control policies, little attention has been paid to guiding rational disease control at the animal-human interface.MethodsWe introduce a modeling framework to analyze the impacts of different disease control policies, focusing on pathogens exhibiting subcritical transmission among humans (i.e. pathogens that cannot establish sustained human-to-human transmission). We quantify the relative effectiveness of measures to reduce spillover (e.g. reducing contact with animal hosts), human-to-human transmission (e.g. case isolation), or both at once (e.g. vaccination), across a range of epidemiological contexts.ResultsWe provide guidelines for choosing which mode of control to prioritize in different epidemiological scenarios and considering different levels of resource and relative costs. We contextualize our analysis with current zoonotic pathogens and other subcritical pathogens, such as post-elimination measles, and control policies that have been applied.ConclusionsOur work provides a model-based, theoretical foundation to understand and guide policy for subcritical zoonoses, integrating across disciplinary and species boundaries in a manner consistent with One Health principles.
Project description:Infectious diseases are emerging globally at an unprecedented rate while global food demand is projected to increase sharply by 2100. Here, we synthesize the pathways by which projected agricultural expansion and intensification will influence human infectious diseases and how human infectious diseases might likewise affect food production and distribution. Feeding 11 billion people will require substantial increases in crop and animal production that will expand agricultural use of antibiotics, water, pesticides and fertilizer, and contact rates between humans and both wild and domestic animals, all with consequences for the emergence and spread of infectious agents. Indeed, our synthesis of the literature suggests that, since 1940, agricultural drivers were associated with >25% of all - and >50% of zoonotic - infectious diseases that emerged in humans, proportions that will likely increase as agriculture expands and intensifies. We identify agricultural and disease management and policy actions, and additional research, needed to address the public health challenge posed by feeding 11 billion people.
Project description:Emerging infectious diseases (EIDs) are a significant burden on global economies and public health. Their emergence is thought to be driven largely by socio-economic, environmental and ecological factors, but no comparative study has explicitly analysed these linkages to understand global temporal and spatial patterns of EIDs. Here we analyse a database of 335 EID 'events' (origins of EIDs) between 1940 and 2004, and demonstrate non-random global patterns. EID events have risen significantly over time after controlling for reporting bias, with their peak incidence (in the 1980s) concomitant with the HIV pandemic. EID events are dominated by zoonoses (60.3% of EIDs): the majority of these (71.8%) originate in wildlife (for example, severe acute respiratory virus, Ebola virus), and are increasing significantly over time. We find that 54.3% of EID events are caused by bacteria or rickettsia, reflecting a large number of drug-resistant microbes in our database. Our results confirm that EID origins are significantly correlated with socio-economic, environmental and ecological factors, and provide a basis for identifying regions where new EIDs are most likely to originate (emerging disease 'hotspots'). They also reveal a substantial risk of wildlife zoonotic and vector-borne EIDs originating at lower latitudes where reporting effort is low. We conclude that global resources to counter disease emergence are poorly allocated, with the majority of the scientific and surveillance effort focused on countries from where the next important EID is least likely to originate.
Project description:Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare, bioterrorism, biological accidents, and harmful consequences arising from dual-use biotechnology also pose a challenge for global biosecurity. Improving the early surveillance capabilities is necessary for building a common biosecurity shield for the global community of health for all. Furthermore, surveillance could provide early warning and situational awareness of biosecurity risks. However, current surveillance systems face enormous challenges, including technical shortages, fragmented management, and limited international cooperation. Detecting emerging biological risks caused by unknown or novel pathogens is of particular concern. Surveillance systems must be enhanced to effectively mitigate biosecurity risks. Thus, a global strategy of meaningful cooperation based on efficient integration of surveillance at all levels, including interdisciplinary integration of techniques and interdepartmental integration for effective management, is urgently needed. In this paper, we review the biosecurity risks by analyzing potential factors at all levels globally. In addition to describing biosecurity risks and their impact on global security, we also focus on analyzing the challenges to traditional surveillance and propose suggestions on how to integrate current technologies and resources to conduct effective global surveillance.
Project description:Effective public health research and preparedness requires an accurate understanding of which virus species possess or are at risk of developing human transmissibility. Unfortunately, our ability to identify these viruses is limited by gaps in disease surveillance and an incomplete understanding of the process of viral adaptation. By fitting boosted regression trees to data on 224 human viruses and their associated traits, we developed a model that predicts the human transmission ability of zoonotic viruses with over 84% accuracy. This model identifies several viruses that may have an undocumented capacity for transmission between humans. Viral traits that predicted human transmissibility included infection of nonhuman primates, the absence of a lipid envelope, and detection in the human nervous system and respiratory tract. This predictive model can be used to prioritize high-risk viruses for future research and surveillance, and could inform an integrated early warning system for emerging infectious diseases.
Project description:Zoonotic diseases are the main contributor to emerging infectious diseases (EIDs) and present a major threat to global public health. Bushmeat is an important source of protein and income for many African people, but bushmeat-related activities have been linked to numerous EID outbreaks, such as Ebola, HIV, and SARS. Importantly, increasing demand and commercialization of bushmeat is exposing more people to pathogens and facilitating the geographic spread of diseases. To date, these linkages have not been systematically assessed. Here we review the literature on bushmeat and EIDs for sub-Saharan Africa, summarizing pathogens (viruses, fungi, bacteria, helminths, protozoan, and prions) by bushmeat taxonomic group to provide for the first time a comprehensive overview of the current state of knowledge concerning zoonotic disease transmission from bushmeat into humans. We conclude by drawing lessons that we believe are applicable to other developing and developed regions and highlight areas requiring further research to mitigate disease risk.
Project description:Today's world is characterized by increasing population density, human mobility, urbanization, and climate and ecological change. This global dynamic has various effects, including the increased appearance of emerging infectious diseases (EIDs), which pose a growing threat to global health security.Outbreaks of EIDs, like the 2013-2016 Ebola outbreak in West Africa or the current Ebola outbreak in Democratic Republic of the Congo (DRC), have not only put populations in low- and middle-income countries (LMIC) at risk in terms of morbidity and mortality, but they also have had a significant impact on economic growth in affected regions and beyond.The Coalition for Epidemic Preparedness Innovation (CEPI) is an innovative global partnership between public, private, philanthropic, and civil society organizations that was launched as the result of a consensus that a coordinated, international, and intergovernmental plan was needed to develop and deploy new vaccines to prevent future epidemics.CEPI is focusing on supporting candidate vaccines against the World Health Organization (WHO) Blueprint priority pathogens MERS-CoV, Nipah virus, Lassa fever virus, and Rift Valley fever virus, as well as Chikungunya virus, which is on the WHO watch list. The current vaccine portfolio contains a wide variety of technologies, ranging across recombinant viral vectors, nucleic acids, and recombinant proteins. To support and accelerate vaccine development, CEPI will also support science projects related to the development of biological standards and assays, animal models, epidemiological studies, and diagnostics, as well as build capacities for future clinical trials in risk-prone contexts.
Project description:BackgroundTo support the development of early warning and surveillance systems of emerging zoonoses, we present a general method to prioritize pathogens using a quantitative, stochastic multi-criteria model, parameterized for the Netherlands.Methodology/principal findingsA risk score was based on seven criteria, reflecting assessments of the epidemiology and impact of these pathogens on society. Criteria were weighed, based on the preferences of a panel of judges with a background in infectious disease control.Conclusions/significancePathogens with the highest risk for the Netherlands included pathogens in the livestock reservoir with a high actual human disease burden (e.g. Campylobacter spp., Toxoplasma gondii, Coxiella burnetii) or a low current but higher historic burden (e.g. Mycobacterium bovis), rare zoonotic pathogens in domestic animals with severe disease manifestations in humans (e.g. BSE prion, Capnocytophaga canimorsus) as well as arthropod-borne and wildlife associated pathogens which may pose a severe risk in future (e.g. Japanese encephalitis virus and West-Nile virus). These agents are key targets for development of early warning and surveillance.