Unknown

Dataset Information

0

Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis.


ABSTRACT: Organogenesis is a highly integrated process with a fundamental requirement for precise cell cycle control. Mechanistically, the cell cycle is composed of transitions and thresholds that are controlled by coordinated post-translational modifications. In this study, we describe a novel mechanism controlling the persistence of the transcription factor ATF4 by multisite phosphorylation. Proline-directed phosphorylation acted additively to regulate multiple aspects of ATF4 degradation. Stabilized ATF4 mutants exhibit decreased ?-TrCP degron phosphorylation, ?-TrCP interaction, and ubiquitination, as well as elicit early G(1) arrest. Expression of stabilized ATF4 also had significant consequences in the developing neocortex. Mutant ATF4 expressing cells exhibited positioning and differentiation defects that were attributed to early G(1) arrest, suggesting that neurogenesis is sensitive to ATF4 dosage. We propose that precise regulation of the ATF4 dosage impacts cell cycle control and impinges on neurogenesis.

SUBMITTER: Frank CL 

PROVIDER: S-EPMC2963346 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis.

Frank Christopher L CL   Ge Xuecai X   Xie Zhigang Z   Zhou Ying Y   Tsai Li-Huei LH  

The Journal of biological chemistry 20100819 43


Organogenesis is a highly integrated process with a fundamental requirement for precise cell cycle control. Mechanistically, the cell cycle is composed of transitions and thresholds that are controlled by coordinated post-translational modifications. In this study, we describe a novel mechanism controlling the persistence of the transcription factor ATF4 by multisite phosphorylation. Proline-directed phosphorylation acted additively to regulate multiple aspects of ATF4 degradation. Stabilized AT  ...[more]

Similar Datasets

| S-EPMC8148376 | biostudies-literature
| S-EPMC2947364 | biostudies-literature
| S-EPMC5863619 | biostudies-literature
| S-EPMC4075335 | biostudies-literature
| S-EPMC2781050 | biostudies-literature
| S-EPMC1413621 | biostudies-literature
| S-EPMC4288926 | biostudies-literature
| S-EPMC5107905 | biostudies-other
| S-EPMC6687830 | biostudies-literature
| S-EPMC3173173 | biostudies-literature