A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis.
Ontology highlight
ABSTRACT: Phosphatase and tensin homologue (PTEN) is a dual lipid-protein phosphatase that catalyzes the conversion of phosphoinositol 3,4,5-triphosphate to phosphoinositol 4,5-bisphosphate and thereby inhibits PI3K-Akt-dependent cell proliferation, migration, and tumor vascularization. We have uncovered a previously unrecognized role for PTEN in regulating Ca(2+) entry through transient receptor potential canonical channel 6 (TRPC6) that does not require PTEN phosphatase activity. We show that PTEN tail-domain residues 394-403 permit PTEN to associate with TRPC6. The inflammatory mediator thrombin promotes this association. Deletion of PTEN residues 394-403 prevents TRPC6 cell surface expression and Ca(2+) entry. However, PTEN mutant, C124S, which lacks phosphatase activity, did not alter TRPC6 activity. Thrombin failed to increase endothelial monolayer permeability in the endothelial cells, transducing the ?394-403 PTEN mutant. Paradoxically, we also show that thrombin failed to induce endothelial cell migration and tube formation in cells transducing the ?394-403 PTEN mutant. Our results demonstrate that PTEN, through residues 394-403, serves as a scaffold for TRPC6, enabling cell surface expression of the channel. Ca(2+) entry through TRPC6 induces an increase in endothelial permeability and directly promotes angiogenesis. Thus, PTEN is indicated to play a role beyond suppressing PI3K signaling.
SUBMITTER: Kini V
PROVIDER: S-EPMC2963370 | biostudies-literature | 2010 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA