Ontology highlight
ABSTRACT: Background
Disabled phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase/extracellular signal-regulated kinase signalling is involved in endometrial carcinogenesis, and there is evidence that expression of epidermal growth factor receptor (EGFR) family members has a role in such intracellular signalling pathways. This study analysed the prognostic impact of EGFR family expression in endometrial cancer in relation to PI3K-AKT and MAPK-ERK signalling, as well as drug sensitivity.Methods and results
Immunohistochemical analysis using 63 surgical specimens of endometrioid-type endometrial cancers revealed that EGFR, human epidermal growth factor receptor (HER)-2 and HER-4 were expressed in 25 (39.7%) of 63, 26 (41.3%) of 63 and 31 (49.2%) of 63 tumours, respectively. Gene amplification of HER-2 was observed in 2 of 26 patients with high HER-2 expression. Kaplan-Meier analysis revealed that high HER-2 expression was a factor that negatively influenced the progression-free and overall survival rate (P<0.05), and multivariate analysis showed high HER-2 expression to be an independent prognostic factor. Subsequently, we performed in vitro knockdown analysis to investigate the linkage between HER-2 expression and PI3K-AKT pathways. Short interfering RNA (siRNA)-based knockdown of HER-2 in endometrial cancer cells led to a significant reduction in phosphorylated AKT (p-AKT) expression, indicating the existence of a HER-2/PI3K-AKT axis. As the PI3K-AKT pathway is known to have crucial roles in anticancer drug sensitivity, we examined the involvement of HER-2 in sensitivity to paclitaxel. Short interfering RNA-based knockdown of HER-2 conferred increased sensitivity to paclitaxel in endometrial cancer cells, attenuating the induction of p-AKT on paclitaxel stimulation, which was cancelled by inactivating AKT by the introduction of a dominant-negative form.Conclusion
HER-2 is a significant prognostic factor of endometrioid-type endometrial cancer, as well as a key molecule that affects paclitaxel sensitivity by HER-2 interaction with the PI3K-AKT pathway.
SUBMITTER: Mori N
PROVIDER: S-EPMC2966616 | biostudies-literature |
REPOSITORIES: biostudies-literature