Unknown

Dataset Information

0

A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4AI.


ABSTRACT:

Background

Minocycline, a second-generation tetracycline antibiotic, has potential activity for the treatment of several neurodegenerative and psychiatric disorders. However, its mechanisms of action remain to be determined.

Methodology/principal findings

We found that minocycline, but not tetracycline, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. Furthermore, we found that the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3) receptors and several common signaling molecules (PLC-?, PI3K, Akt, p38 MAPK, c-Jun N-terminal kinase (JNK), mammalian target of rapamycin (mTOR), and Ras/Raf/ERK/MAPK pathways) might be involved in the active mechanism of minocycline. Moreover, we found that a marked increase of the eukaryotic translation initiation factor eIF4AI protein by minocycline, but not tetracycline, might be involved in the active mechanism for NGF-induced neurite outgrowth.

Conclusions/significance

These findings suggest that eIF4AI might play a role in the novel mechanism of minocycline. Therefore, agents that can increase eIF4AI protein would be novel therapeutic drugs for certain neurodegenerative and psychiatric diseases.

SUBMITTER: Hashimoto K 

PROVIDER: S-EPMC2975708 | biostudies-literature | 2010 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4AI.

Hashimoto Kenji K   Ishima Tamaki T  

PloS one 20101108 11


<h4>Background</h4>Minocycline, a second-generation tetracycline antibiotic, has potential activity for the treatment of several neurodegenerative and psychiatric disorders. However, its mechanisms of action remain to be determined.<h4>Methodology/principal findings</h4>We found that minocycline, but not tetracycline, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. Furthermore, we found that the endoplasmic reticul  ...[more]

Similar Datasets

| S-EPMC3192864 | biostudies-literature
| S-EPMC2562925 | biostudies-literature
| S-EPMC4654474 | biostudies-literature
| S-EPMC5600454 | biostudies-literature
| S-EPMC7143819 | biostudies-literature
| S-EPMC8371652 | biostudies-literature
| S-EPMC1223812 | biostudies-other
| S-EPMC3335126 | biostudies-literature
| S-EPMC7587564 | biostudies-literature
| S-EPMC3420912 | biostudies-literature