Unknown

Dataset Information

0

STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and -independent mechanisms.


ABSTRACT: Given the association with autoimmune disease, there is great interest in defining cellular factors that limit overactive or misdirected Th17-type inflammation. Using in vivo and in vitro models, we investigated the molecular mechanisms for cytokine-mediated inhibition of Th17 responses, focusing on the role of STAT1 and T-bet in this process. These studies demonstrate that, during systemic inflammation, STAT1- and T-bet-deficient T cells each exhibit a hyper-Th17 phenotype relative to wild-type controls. However, IL-17 production was greater in the absence of T-bet, and when both STAT1 and T-bet were deleted, there was no further increase, with the double-deficient cells instead behaving more like STAT1-deficient counterparts. Similar trends were observed during in vitro priming, with production of Th17-type cytokines greater in T-bet(-/-) T cells than in either STAT1(-/-) or STAT1(-/-) T-bet(-/-) counterparts. The ability of IFN-? and IL-27 to suppress Th17 responses was reduced in T-bet-deficient cells, and most importantly, ectopic T-bet could suppress signature Th17 gene products, including IL-17A, IL-17F, IL-22, and retinoic acid-related orphan receptor ?T, even in STAT1-deficient T cells. Taken together, these studies formally establish that, downstream of IFN-?, IL-27, and likely all STAT1-activating cytokines, there are both STAT1 and T-bet-dependent pathways capable of suppressing Th17 responses.

SUBMITTER: Villarino AV 

PROVIDER: S-EPMC2988093 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and -independent mechanisms.

Villarino Alejandro V AV   Gallo Eugenio E   Abbas Abul K AK  

Journal of immunology (Baltimore, Md. : 1950) 20101025 11


Given the association with autoimmune disease, there is great interest in defining cellular factors that limit overactive or misdirected Th17-type inflammation. Using in vivo and in vitro models, we investigated the molecular mechanisms for cytokine-mediated inhibition of Th17 responses, focusing on the role of STAT1 and T-bet in this process. These studies demonstrate that, during systemic inflammation, STAT1- and T-bet-deficient T cells each exhibit a hyper-Th17 phenotype relative to wild-type  ...[more]

Similar Datasets

| S-EPMC3838449 | biostudies-literature
| S-EPMC3791687 | biostudies-literature
| S-EPMC3633668 | biostudies-literature
| S-EPMC3804955 | biostudies-literature
| S-EPMC8873479 | biostudies-literature
| S-EPMC4363997 | biostudies-literature
| S-EPMC5962435 | biostudies-literature
| S-EPMC3538599 | biostudies-literature
| S-EPMC3814816 | biostudies-literature
| S-EPMC4610870 | biostudies-literature