Unknown

Dataset Information

0

Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.


ABSTRACT: It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders.

SUBMITTER: Roll P 

PROVIDER: S-EPMC2989892 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex.

Roll Patrice P   Vernes Sonja C SC   Bruneau Nadine N   Cillario Jennifer J   Ponsole-Lenfant Magali M   Massacrier Annick A   Rudolf Gabrielle G   Khalife Manal M   Hirsch Edouard E   Fisher Simon E SE   Szepetowski Pierre P  

Human molecular genetics 20100921 24


It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor  ...[more]

Similar Datasets

| S-EPMC3131290 | biostudies-literature
| S-EPMC5071336 | biostudies-literature
| S-EPMC2151080 | biostudies-literature
| S-EPMC6594421 | biostudies-literature
| S-EPMC4460484 | biostudies-literature
| S-EPMC6633911 | biostudies-literature
| S-EPMC8614651 | biostudies-literature
| S-EPMC2276341 | biostudies-literature
| S-EPMC2268594 | biostudies-literature
| S-EPMC5931254 | biostudies-literature