Unknown

Dataset Information

0

Molecular analysis of capsid protein of Homalodisca coagulata Virus-1, a new leafhopper-infecting virus from the glassy-winged sharpshooter, Homalodisca coagulata.


ABSTRACT: A new virus that infects and causes increased mortality in leafhoppers was isolated from the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The virus, named Homalodisca coagulata virus -1, HoCV-1, was associated with increased mortality of cultured 5(th) instar H. coagulata. To identify the presence of H. coagulata viral pathogens, cDNA expression libraries were made from adult and nymphs. Analysis using reverse transcriptase PCR demonstrated that the virus was present in midgut tissues. As the viral capsid proteins are commonly used in classification of newly discovered viruses, the capsid proteins (CP) of the virus discovered in H. coagulata was examined. The order of the polyprotein subunits of HoCV-1 capsid proteins was determined to be CP2, CP4, CP3, and CP1. The CP4/CP3 (AFGL/GKPK) cleavage boundary site was clearly identified when the sequences were aligned. The putative CP3/CP1 (ADVQ/SAFA) cleavage site and the putative CP2/CP4 (VTMQ/EQSA) cleavage site of HoCV-1, respectively, were located in the same region as that of the other viruses. After alignment, the CP3/CP1 cleavage sites and CP2/CP4 cleavage sites of the viruses analyzed fell within 50 amino acids of one another. As with the cricket paralysis virus, HoCV-1 was found to be mainly comprised of beta-sandwiches in CP1-3 with a jelly roll topological motif. CP4 of HoCV-1 appeared to be mainly alpha-helical in structure. CP1-4 domains are most homologous to insect picorna-like virus coat proteins as was demonstrated by the results of the BLASTP and PSI-BLAST tests, and is strongly supported by the structural modeling. While sequence homology between the cricket paralysis virus and HoCV-1 was low, the global structure of the proteins was conserved. Sequence identities were analyzed by in silico comparison to known genes in the public database, NCBI. Phylogenetic analysis performed using the optimized protein alignment generated a phylogram containing 5 clades. Clade 1 consisted of Drosophila C virus, Clade 2 consisted of cricket paralysis virus, Clade 3 of Triatoma virus, Plautia stali intestine virus, Himetobi P virus, black queen cell virus, and HoCV-1. Clade 4 encompassed acute bee paralysis virus and Kashmir bee virus, and Clade 5 consisted of Rhopalosiphum padi virus. Analysis of the capsid protein of this new leafhopper virus provided significant evidence that it is related to other ssRNA insect viruses within the Family, Dicistroviridae. The HoCV-1, capsid protein sequence has been deposited in GenBank, Accession number: DQ308403.

SUBMITTER: Hunter WB 

PROVIDER: S-EPMC2990318 | biostudies-literature | 2006

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular analysis of capsid protein of Homalodisca coagulata Virus-1, a new leafhopper-infecting virus from the glassy-winged sharpshooter, Homalodisca coagulata.

Hunter W B WB   Katsar C S CS   Chaparro J X JX  

Journal of insect science (Online) 20060101


A new virus that infects and causes increased mortality in leafhoppers was isolated from the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The virus, named Homalodisca coagulata virus -1, HoCV-1, was associated with increased mortality of cultured 5(th) instar H. coagulata. To identify the presence of H. coagulata viral pathogens, cDNA expression libraries were made from adult and nymphs. Analysis using reverse transcriptase PCR demonstrated that the virus wa  ...[more]

Similar Datasets

| S-EPMC1615248 | biostudies-literature
| S-EPMC9018754 | biostudies-literature
| S-EPMC3846607 | biostudies-literature
| S-EPMC3858241 | biostudies-literature
| S-EPMC8496328 | biostudies-literature
| S-EPMC6104007 | biostudies-literature
| S-EPMC4595010 | biostudies-literature
| S-EPMC6726837 | biostudies-literature
| S-EPMC9409420 | biostudies-literature
| S-EPMC5592932 | biostudies-literature