Unknown

Dataset Information

0

SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA.


ABSTRACT: We develop a new principal components analysis (PCA) type dimension reduction method for binary data. Different from the standard PCA which is defined on the observed data, the proposed PCA is defined on the logit transform of the success probabilities of the binary observations. Sparsity is introduced to the principal component (PC) loading vectors for enhanced interpretability and more stable extraction of the principal components. Our sparse PCA is formulated as solving an optimization problem with a criterion function motivated from penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated by application to a single nucleotide polymorphism data set and a simulation study.

SUBMITTER: Lee S 

PROVIDER: S-EPMC2992445 | biostudies-literature | 2010 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA.

Lee Seokho S   Huang Jianhua Z JZ   Hu Jianhua J  

The annals of applied statistics 20100901 3


We develop a new principal components analysis (PCA) type dimension reduction method for binary data. Different from the standard PCA which is defined on the observed data, the proposed PCA is defined on the logit transform of the success probabilities of the binary observations. Sparsity is introduced to the principal component (PC) loading vectors for enhanced interpretability and more stable extraction of the principal components. Our sparse PCA is formulated as solving an optimization proble  ...[more]

Similar Datasets

| S-EPMC7663540 | biostudies-literature
| S-EPMC5912177 | biostudies-literature
| S-EPMC4528629 | biostudies-literature
| S-EPMC4408558 | biostudies-literature
| S-EPMC4032817 | biostudies-literature
| S-EPMC9042111 | biostudies-literature
| S-EPMC5517364 | biostudies-literature
| S-EPMC9793858 | biostudies-literature
| S-EPMC2856747 | biostudies-literature
| S-EPMC4394907 | biostudies-literature