Unknown

Dataset Information

0

Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR.


ABSTRACT: The site-specific motion of Arg residues in a membrane-bound disulfide-linked antimicrobial peptide, protegrin-1 (PG-1), was investigated by using magic-angle-spinning solid-state NMR spectroscopy to better understand the membrane insertion and lipid interaction of this cationic membrane-disruptive peptide. The C-H and N-H dipolar couplings and 13C chemical shift anisotropies were measured in the anionic POPE/POPG membrane, and were found to be reduced from the rigid-limit values by varying extents; this indicates the presence of segmental motion. An Arg residue at the beta-turn region of the peptide showed much weaker spin interactions, which indicates larger amplitudes of motion than an Arg residue in the beta-strand region of the peptide. This is consistent with the exposure of the beta turn to the membrane surface and the immersion of the beta strand in the hydrophobic middle of the membrane, and supports the previously proposed oligomerization of the peptide into beta barrels in the anionic membrane. The 13C T2 and 1H T(1rho) relaxation times indicate that the beta-turn backbone undergoes large-amplitude intermediate-timescale motion in the fluid phase of the membrane; this causes significant line broadening and loss of spectral intensity. This study illustrates the strong correlation between the dynamics and structure of membrane proteins, and the capability of solid-state NMR spectroscopy to provide detailed information on site-specific dynamics in complex membrane-protein assemblies.

SUBMITTER: Tang M 

PROVIDER: S-EPMC2992830 | biostudies-literature | 2008 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR.

Tang Ming M   Waring Alan J AJ   Hong Mei M  

Chembiochem : a European journal of chemical biology 20080601 9


The site-specific motion of Arg residues in a membrane-bound disulfide-linked antimicrobial peptide, protegrin-1 (PG-1), was investigated by using magic-angle-spinning solid-state NMR spectroscopy to better understand the membrane insertion and lipid interaction of this cationic membrane-disruptive peptide. The C-H and N-H dipolar couplings and 13C chemical shift anisotropies were measured in the anionic POPE/POPG membrane, and were found to be reduced from the rigid-limit values by varying exte  ...[more]

Similar Datasets

| S-EPMC1637567 | biostudies-literature
| S-EPMC3699732 | biostudies-other
| S-EPMC2925115 | biostudies-other
| S-EPMC1518647 | biostudies-literature
| S-EPMC3756332 | biostudies-literature
| S-EPMC2757838 | biostudies-literature
| S-EPMC6225022 | biostudies-literature
| S-EPMC5176267 | biostudies-literature
| S-EPMC6312106 | biostudies-literature
| S-EPMC4398059 | biostudies-literature