The assembly-inducing laulimalide/peloruside a binding site on tubulin: molecular modeling and biochemical studies with [³H]peloruside A.
Ontology highlight
ABSTRACT: We used synthetic peloruside A for the commercial preparation of [³H]peloruside A. The radiolabeled compound bound to preformed tubulin polymer in amounts stoichiometric with the polymer's tubulin content, with an apparent K(d) value of 0.35 ?M. A less active peloruside A analogue, (11-R)-peloruside A and laulimalide acted as competitive inhibitors of the binding of the [³H]peloruside A, with apparent K(i) values of 9.3 and 0.25 ?M, respectively. Paclitaxel, epothilone B, and discodermolide had essentially no ability to inhibit [³H]peloruside A binding, confirming that these compounds bind to a different site on tubulin polymer. We modeled both laulimalide and peloruside A into the binding site on ?-tubulin that was identified by Huzil et al. (J. Mol. Biol. 2008, 378, 1016-1030), but our model provides a more reasonable structural basis for the protein-ligand interaction. There is a more complete desolvation of the peloruside A ligand and a greater array of favorable hydrophobic and electrostatic interactions exhibited by peloruside A at its ?-tubulin binding site. In addition, the protein architecture in our peloruside A binding model was suitable for binding laulimalide. With the generation of both laulimalide and peloruside A binding models, it was possible to delineate the structural basis for the greater activity of laulimalide relative to peloruside A and to rationalize the known structure-activity relationship data for both compounds.
SUBMITTER: Nguyen TL
PROVIDER: S-EPMC2996141 | biostudies-literature | 2010 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA