Ontology highlight
ABSTRACT: Background
KRAS mutational analysis is the standard of care prior to initiation of treatments targeting the epidermal growth factor receptor (EGFR) in patients with metastatic colorectal cancer. Sensitive methods are required to reliably detect KRAS mutations in tumor samples due to admixture with non-mutated cells. Many laboratories have implemented sensitive tests for KRAS mutations, but the methods often require expensive instrumentation and reagents, parallel reactions, multiple steps, or opening PCR tubes.Methods
We developed a highly sensitive, single-reaction, closed-tube strategy to detect all clinically significant mutations in KRAS codons 12 and 13 using the Roche LightCycler® instrument. The assay detects mutations via PCR-melting curve analysis with a Cy5.5-labeled sensor probe that straddles codons 12 and 13. Incorporating a fast COLD-PCR cycling program with a critical denaturation temperature (Tc) of 81°C increased the sensitivity of the assay >10-fold for the majority of KRAS mutations.Results
We compared the COLD-PCR enhanced melting curve method to melting curve analysis without COLD-PCR and to traditional Sanger sequencing. In a cohort of 61 formalin-fixed paraffin-embedded colorectal cancer specimens, 29/61 were classified as mutant and 28/61 as wild type across all methods. Importantly, 4/61 (6%) were re-classified from wild type to mutant by the more sensitive COLD-PCR melting curve method. These 4 samples were confirmed to harbor clinically-significant KRAS mutations by COLD-PCR DNA sequencing. Five independent mixing studies using mutation-discordant pairs of cell lines and patient specimens demonstrated that the COLD-PCR enhanced melting curve assay could consistently detect down to 1% mutant DNA in a wild type background.Conclusions
We have developed and validated an inexpensive, rapid, and highly sensitive clinical assay for KRAS mutations that is the first report of COLD-PCR combined with probe-based melting curve analysis. This assay significantly improved diagnostic accuracy compared to traditional PCR and direct sequencing.
SUBMITTER: Pritchard CC
PROVIDER: S-EPMC3001699 | biostudies-literature | 2010 Nov
REPOSITORIES: biostudies-literature
BMC clinical pathology 20101126
<h4>Background</h4>KRAS mutational analysis is the standard of care prior to initiation of treatments targeting the epidermal growth factor receptor (EGFR) in patients with metastatic colorectal cancer. Sensitive methods are required to reliably detect KRAS mutations in tumor samples due to admixture with non-mutated cells. Many laboratories have implemented sensitive tests for KRAS mutations, but the methods often require expensive instrumentation and reagents, parallel reactions, multiple step ...[more]