Ontology highlight
ABSTRACT: Background
Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are microscopic, feeding within the plankton until they metamorphose into their adult forms.Results
We describe here the localization of 14 transcription factors within the ectoderm during early embryogenesis in Patiria miniata, a sea star with an indirectly developing planktonic bipinnaria larva. We find that the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that we observe throughout the ectoderm generally corresponds to that of "head/anterior brain" patterning known for hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in retinal determination is absent from the ectoderm of these echinoderms and instead operates within the mesoderm.Conclusions
Our findings therefore extend, for the first time, evidence of a conserved axial pattering to echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning from "retinal specification" in echinoderm blastulae might reflect modular changes to a developmental gene regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae.
SUBMITTER: Yankura KA
PROVIDER: S-EPMC3002323 | biostudies-literature | 2010 Nov
REPOSITORIES: biostudies-literature