Sustained lung activity of a novel chimeric protein, SOD2/3, after intratracheal administration.
Ontology highlight
ABSTRACT: Delivery of recombinant superoxide dismutase to the lung is limited by its short half-life and poor tissue penetration. We hypothesized that a chimeric protein, SOD2/3, containing the enzymatic domain of manganese superoxide dismutase (SOD2) and the heparan-binding domain of extracellular superoxide dismutase (SOD3), would allow for the delivery of more sustained lung and pulmonary vascular antioxidant activity compared to SOD2. We administered SOD2/3 to rats by intratracheal (i.t.), intraperitoneal (i.p.), or intravenous (i.v.) routes and evaluated the presence, localization, and activity of lung SOD2/3 1 day later using Western blot, immunohistochemistry, and SOD activity gels. The effect of i.t. SOD2/3 on the pulmonary and systemic circulation was studied in vivo in chronically catheterized rats exposed to acute hypoxia. Active SOD2/3 was detected in lung 1 day after i.t. administration but not detected after i.p. or i.v. SOD2/3 administration or i.t. SOD2. The physiologic response to acute hypoxia, vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation, was enhanced in rats treated 1 day earlier with i.t. SOD2/3. These findings indicate that i.t. administration of SOD2/3 effectively delivers sustained enzyme activity to the lung as well as pulmonary circulation and has a longer tissue half-life compared to native SOD2. Further testing in models of chronic lung or pulmonary vascular diseases mediated by excess superoxide should consider the longer tissue half-life of SOD2/3 as well as its potential systemic vascular effects.
SUBMITTER: Clarke MB
PROVIDER: S-EPMC3005855 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA