Biodegradation of a biocide (Cu-N-cyclohexyldiazenium dioxide) component of a wood preservative by a defined soil bacterial community.
Ontology highlight
ABSTRACT: The wood protection industry has refined their products from chrome-, copper-, and arsenate-based wood preservatives toward solely copper-based preservatives in combination with organic biocides. One of these is Cu-HDO, containing the chelation product of copper and N-cyclohexyldiazenium dioxide (HDO). In this study, the fate of isotope-labeled ((13)C) and nonlabeled ((12)C) Cu-HDO incorporated in wood sawdust mixed with soil was investigated. HDO concentration was monitored by high-pressure liquid chromatography. The total carbon and the ?(13)C content of respired CO(2), as well as of the soil-wood-sawdust mixture, were determined with an elemental analyzer-isotopic ratio mass spectrometer. The concentration of HDO decreased significantly after 105 days of incubation, and after 24 days the (13)CO(2) concentration respired from soil increased steadily to a maximum after 64 days of incubation. Phospholipid fatty acid-stable isotope probing (PFA-SIP) analysis revealed that the dominant PFAs C(19:0)d8,9, C(18:0), C(18:1)?7, C(18:2)?6,9, C(17:1)d7,8, C(16:0), and C(16:1)?7 were highly enriched in their ?(13)C content. Moreover, RNA-SIP identified members of the phylum Acidobacteria and the genera Phenylobacterium and Comamonas that were assimilating carbon from HDO exclusively. Cu-HDO as part of a wood preservative effectively decreased fungal wood decay and overall microbial respiration from soil. In turn, a defined bacterial community was stimulated that was able to metabolize HDO completely.
SUBMITTER: Jakobs-Schonwandt D
PROVIDER: S-EPMC3008219 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA