The RNA binding motif protein 15B (RBM15B/OTT3) is a functional competitor of serine-arginine (SR) proteins and antagonizes the positive effect of the CDK11p110-cyclin L2α complex on splicing.
Ontology highlight
ABSTRACT: Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11(p110) binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11(p110), cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11(p110), cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11(p110)-cyclin L2α complex on splicing both in vitro and in vivo.
Project description:The human SPEN family proteins SHARP, RBM15/OTT1, and RBM15B/OTT3 share the structural domain architecture but show distinct functional properties. Here, we examined the function of OTT3 and compared it with its paralogues RBM15 and SHARP. We found that OTT3, like RBM15, has post-transcriptional regulatory activity, whereas SHARP does not, supporting a divergent role of RBM15 and OTT3. OTT3 shares with RBM15 the association with the splicing factor compartment and the nuclear envelope as well as the binding to mRNA export factors NXF1 and Aly/REF. Mutational analysis revealed direct interaction of OTT3 and RBM15 with NXF1 via their C-terminal regions. Biochemical and subcellular localization studies showed that OTT3 and RBM15 also interact with each other in vivo, further supporting a shared function. Genetic knockdown of RBM15 in mouse is embryonically lethal, indicating that OTT3 cannot compensate for the RBM15 loss, which supports the notion that these proteins, in addition to sharing similar activities, likely have distinct biological roles.
Project description:Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine-rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes.
Project description:Members of the highly conserved serine/arginine-rich (SR) protein family are nuclear factors involved in splicing of metazoan mRNA precursors. In mammals, two nuclear import receptors, transportin (TRN)-SR1 and TRN-SR2, are responsible for targeting SR proteins to the nucleus. Distinctive features in the nuclear localization signal between Drosophila and mammalian SR proteins prompted us to examine the mechanism by which Drosophila SR proteins and their antagonist repressor splicing factor 1 (RSF1) are imported into nucleus. Herein, we report the identification and characterization of a Drosophila importin beta-family protein (dTRN-SR), homologous to TRN-SR2, that specifically interacts with both SR proteins and RSF1. dTRN-SR has a broad localization in the cytoplasm and the nucleus, whereas an N-terminal deletion mutant colocalizes with SR proteins in nuclear speckles. Far Western experiments established that the RS domain of SR proteins and the GRS domain of RSF1 are required for the direct interaction with dTRN-SR, an interaction that can be modulated by phosphorylation. Using the yeast model system in which nuclear import of Drosophila SR proteins and RSF1 is impaired, we demonstrate that complementation with dTRN-SR is sufficient to target these proteins to the nucleus. Together, the results imply that the mechanism by which SR proteins are imported to the nucleus is conserved between Drosophila and humans.
Project description:The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine-serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S', but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.
Project description:Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Project description:Plant growth responds to various environmental and developmental cues via signaling cascades that influence gene expression at the level of transcription and pre-mRNA splicing. Alternative splicing of pre-mRNA increases the coding potential of the genome from multiexon genes and regulates gene expression through multiple mechanisms. Serine/arginine-rich (SR) proteins, a conserved family of splicing factors, are the key players of alternative splicing and regulate pre-mRNA splicing under stress conditions. The rice (Oryza sativa) genome encodes 22 SR proteins categorized into six subfamilies. Three of the subfamilies are plant-specific with no mammalian orthologues, and the functions of these SR proteins are not well known. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a genome engineering tool that cleaves the target DNA at specific locations directed by a guide RNA (gRNA). Recent advances in CRISPR/Cas9-mediated plant genome engineering make it possible to generate single and multiple functional knockout mutants in diverse plant species. In this study, we targeted each rice SR locus and produced single knockouts. To overcome the functional redundancy within each subfamily of SR genes, we utilized a polycistronic tRNA-gRNA multiplex targeting system and targeted all loci of each subfamily. Sanger sequencing results indicated that most of the targeted loci had knockout mutations. This study provides useful resource materials for understanding the molecular role of SR proteins in plant development and biotic and abiotic stress responses.
Project description:Nuclear speckles are subnuclear storage sites containing pre-mRNA splicing machinery. Proteins assembled in nuclear speckles are known to modulate transcription and pre-mRNA processing. We have previously identified nuclear speckle-related protein 70 (NSrp70) as a novel serine/arginine (SR)-related protein that co-localizes with classical SR proteins such as serine/arginine-rich splicing factor 1 (SRSF1 or ASF/SF2) and SRSF2 (SC35). NSrp70 mediates alternative splice site selection, targeting several pre-mRNAs, including CD44 exon v5. Here we demonstrated that NSrp70 interacts physically with two SR proteins, SRSF1 and SRSF2, and reverses their splicing activity in terms of CD44 exon v5 as exon exclusion. The NSrp70 RS-like region was subdivided into three areas. Deletion of the first arginine/serine-rich-like region (RS1) completely abrogated binding to the SR proteins and to target mRNA and also failed to induce splicing of CD44 exon v5, suggesting that RS1 is critical for NSrp70 functioning. Interestingly, RS1 deletion also resulted in the loss of NSrp70 and SR protein speckle positioning, implying a potential scaffolding role for NSrp70 in nuclear speckles. NSrp70 contains an N-terminal coiled-coil domain that is critical not only for self-oligomerization but also for splicing activity. Consistently, deletion of the coiled-coil domain resulted in indefinite formation of nuclear speckles. Collectively, these results demonstrate that NSrp70 acts as a new molecular counterpart for alternative splicing of target RNA, counteracting SRSF1 and SRSF2 splicing activity.
Project description:Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant rs33 showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and rs33 seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.
Project description:We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.
Project description:Phosphorylated serine- and arginine-rich (SR) proteins are components of the spliceosomal complex, and have been implicated in the control of alternative splicing. Kinases that regulate the phosphorylation and possibly the intranuclear distribution of SR proteins may therefore contribute to changes in choice of splice site. We have cloned three mouse cDNAs with high sequence identity to the family of LAMMER kinases (i.e. kinases carrying the conserved signature EHLAMMERILG in the catalytic domain). A comparison of their amino acid sequences revealed two related subfamilies with high evolutionary conservation. We have compared the expression patterns of these proteins in mouse tissues and transformed cell lines with that of a previously cloned family member (mCLK1/STY), and detected various transcripts for each gene. This underlines previous findings of alternative splicing of mclk1/STY. Our results suggest that the proportions of products for each gene are regulated independently. We further demonstrate that all variants encode autophosphorylating proteins that can phosphorylate several biochemically purified SR proteins in vitro, leading to hyperphosphorylation of at least one SR protein in vivo. The observed tissue distributions and substrate specificities suggest that these kinases may all be constituents of a network of regulatory mechanisms that enable SR proteins to control RNA splicing.