Mechanisms of autoinhibition of IRF-7 and a probable model for inactivation of IRF-7 by Kaposi's sarcoma-associated herpesvirus protein ORF45.
Ontology highlight
ABSTRACT: IRF-7 is the master regulator of type I interferon-dependent immune responses controlling both innate and adaptive immunity. Given the significance of IRF-7 in the induction of immune responses, many viruses have developed strategies to inhibit its activity to evade or antagonize host antiviral responses. We previously demonstrated that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu, F. X., King, S. M., Smith, E. J., Levy, D. E., and Yuan, Y. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5573-5578). In this report, we sought to reveal the mechanism underlying the ORF45-mediated inactivation of IRF-7. We found that ORF45 interacts with the inhibitory domain of IRF-7. The most striking feature in the IRF-7 inhibitory domain is two ?-helices H3 and H4 that contain many hydrophobic residues and two ?-sheets located between the helices that are also very hydrophobic. These hydrophobic subdomains mediate intramolecular interactions that keep the molecule in a closed (inactive) form. Mutagenesis studies confirm the contribution of the hydrophobic helices and sheets to the autoinhibition of IRF-7 in the absence of viral signal. The binding of ORF45 to the critical domain of IRF-7 leads to a hypothesis that ORF45 may maintain the IRF-7 molecule in the closed form and prevent it from being activated in response to viral infection.
SUBMITTER: Sathish N
PROVIDER: S-EPMC3013033 | biostudies-literature | 2011 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA