Broad and narrow conceptual tuning in the human frontal lobes.
Ontology highlight
ABSTRACT: Previous work has implicated prefrontal cortices in selecting among and retrieving conceptual information stored elsewhere. However, recent neurophysiological work in monkeys suggests that prefrontal cortex may play a more direct role in representing conceptual information in a flexible context-specific manner. Here, we investigate the nature of visual object representations from perceptual to conceptual levels in an unbiased data-driven manner using a functional magnetic resonance imaging adaptation paradigm with pictures of animals. Throughout much of occipital cortex, activity was highly sensitive to changes in 2D stimulus form, consistent with tuning to form and position within retinotopic coordinates and matching an automated measure of shape similarity. Broad superordinate conceptual information was represented as early as extrastriate and posterior ventral temporal cortex. These regions were not completely invariant to form, suggesting that form similarity remains an important organizational constraint into the temporal cortex. Separate sites within prefrontal cortex represented broad and narrow conceptual tuning, with more anterior sites tuned narrowly to close conceptual associates in a manner that was invariant to stimulus form/position and that matched independent similarity ratings of the stimuli. The combination of broad and narrow conceptual tuning within prefrontal cortex may support flexible selection, retrieval, and classification of objects at different levels of categorical abstraction.
SUBMITTER: Gotts SJ
PROVIDER: S-EPMC3020586 | biostudies-literature | 2011 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA