Project description:Twenty Rhipicephalus sanguineus ticks collected in eastern Arizona were tested by PCR assay to establish their infection rate with spotted fever group rickettsiae. With a nested PCR assay which detects a fragment of the Rickettsia genus-specific 17-kDa antigen gene (htrA), five ticks (25%) were found to contain rickettsial DNA. One rickettsial isolate was obtained from these ticks by inoculating a suspension of a triturated tick into monolayers of Vero E6 monkey kidney cells and XTC-2 clawed toad cells, and its cell culture and genotypic characteristics were determined. Fragments of the 16S rRNA, GltA, rOmpA, rOmpB, and Sca4 genes had 100%, 100%, 99%, 99%, and 99%, respectively, nucleotide similarity to Rickettsia massiliae strain Bar29, previously isolated from R. sanguineus in Catalonia, Spain (L. Beati et al., J. Clin. Microbiol. 34:2688-2694, 1996). The new isolate, AZT80, does not elicit cytotoxic effects in Vero cells and causes a persistent infection in XTC-2 cells. The AZT80 strain is susceptible to doxycycline but resistant to rifampin and erythromycin. Whether R. massiliae AZT80 is pathogenic or infectious for dogs and humans or can cause seroconversion to spotted fever group antigens in the United States is unknown.
Project description:Strain S, a spotted fever group (SFG) rickettsia isolated from Rhipicephalus sanguineus ticks collected in Armenia, was identified. Microimmunofluorescence, sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis and Western immunoblotting, PCR and then restriction fragment length polymorphism analysis, pulsed-field gel electrophoresis, and 16S rRNA gene sequencing were used to compare strain S with reference isolates. Strain S was found to possess proteinic, antigenic, and genomic patterns which were unique among SFG rickettsiae. Strain S is characterized by its high degree of pathogenicity for experimental animals, but its role as a potential human pathogen should be determined. The role of R. sanguineus ticks in the epidemiology of SFG rickettsiae is discussed.
Project description:BackgroundRickettsia conorii conorii is the etiological agent of Mediterranean spotted fever, which is transmitted by the brown dog tick, Rhipicephalus sanguineus. The relationship between the Rickettsia and its tick vector are still poorly understood one century after the first description of this disease.Methodology/principal findingsAn entomological survey was organized in Algeria to collect ticks from the houses of patients with spotted fever signs. Colonies of R. conorii conorii-infected and non-infected ticks were established under laboratory conditions. Gimenez staining and electron microscopy on the ovaries of infected ticks indicated heavy rickettsial infection. The transovarial transmission of R. conorii conorii in naturally infected Rh. sanguineus ticks was 100% at eleven generations, and the filial infection rate was up to 99% according to molecular analyses. No differences in life cycle duration were observed between infected and non-infected ticks held at 25°C, but the average weight of engorged females and eggs was significantly lower in infected ticks than in non-infected ticks. The eggs, larvae and unfed nymphs of infected and non-infected ticks could not tolerate low (4°C) or high (37°C) temperatures or long starvation periods. R. conorii conorii-infected engorged nymphs that were exposed to a low or high temperature for one month experienced higher mortality when they were transferred to 25°C than non-infected ticks after similar exposure. High mortality was observed in infected adults that were maintained for one month at a low or high temperature after tick-feeding on rabbits.Conclusion/significanceThese preliminary results suggest that infected quiescent ticks may not survive the winter and may help explain the low prevalence of infected Rh. sanguineus in nature. Further investigations on the influence of extrinsic factors on diapaused R. conorii-infected and non-infected ticks are required.
Project description:BackgroundTick-borne rickettsial pathogens are emerging worldwide and pose an increased health risk to both humans and animals. A plethora of rickettsial species has been identified in ticks recovered from human and animal patients. However, the detection of rickettsial DNA in ticks does not necessarily mean that these ticks can act as vectors for these pathogens. Here, we used artificial feeding of ticks to confirm transmission of Rickettsia massiliae and Rickettsia raoultii by Rhipicephalus sanguineus (sensu lato) and Dermacentor reticulatus ticks, respectively. The speed of transmission was also determined.MethodsAn artificial feeding system based on silicone membranes were used to feed adult R. sanguineus (s.l.) and D. reticulatus ticks. Blood samples from in vitro feeding units were analysed for the presence of rickettsial DNA using PCR and reverse line blot hybridisation.ResultsThe attachment rate of R. sanguineus (s.l.) ticks were 40.4% at 8 h post-application, increasing to 70.2% at 72 h. Rickettsia massiliae was detected in blood samples collected 8 h after the R. sanguineus (s.l.) ticks were placed into the in vitro feeding units. D. reticulatus ticks were pre-fed on sheep and subsequently transferred to the in vitro feeding system. The attachment rate was 29.1 % at 24 h post-application, increasing to 43.6 % at 96 h. Rickettsia raoultii was detected in blood collected 24 h after D. reticulatus was placed into the feeding units.ConclusionsRhipicephalus sanguineus (s.l.) and D. reticulatus ticks are vectors of R. massiliae and R. raoultii, respectively. The transmission of R. massiliae as early as 8 h after tick attachment emphasises the importance of removing ticks as soon as possible to minimise transmission. This study highlights the relevance of in vitro feeding systems to provide insight into the vectorial capacity of ticks and the dynamics of tick-borne pathogen transmission.
Project description:Rickettsia microorganisms are causative agents of several neglected emerging infectious diseases in humans transmitted by arthropods including ticks. In this study, ticks were collected from four geographical regions of Uganda and pooled in sizes of 1-179 ticks based on location, tick species, life stage, host, and time of collection. Then, they were tested by real-time PCR for Rickettsia species with primers targeting gltA, 17kDa and ompA genes, followed by Sanger sequencing of the 17kDa and ompA genes. Of the 471 tick pools tested, 116 (24.6%) were positive for Rickettsia spp. by the gltA primers. The prevalence of Rickettsia varied by district with Gulu recording the highest (30.1%) followed by Luwero (28.1%) and Kasese had the lowest (14%). Tick pools from livestock (cattle, goats, sheep, and pigs) had the highest positivity rate, 26.9%, followed by vegetation, 23.1%, and pets (dogs and cats), 19.7%. Of 116 gltA-positive tick pools, 86 pools were positive using 17kDa primers of which 48 purified PCR products were successfully sequenced. The predominant Rickettsia spp. identified was R. africae (n = 15) in four tick species, followed by R. conorii (n = 5) in three tick species (Haemaphysalis elliptica, Rhipicephalus appendiculatus, and Rh. decoloratus). Rickettsia conorii subsp. israelensis was detected in one tick pool. These findings indicate that multiple Rickettsia spp. capable of causing human illness are circulating in the four diverse geographical regions of Uganda including new strains previously known to occur in the Mediterranean region. Physicians should be informed about Rickettsia spp. as potential causes of acute febrile illnesses in these regions. Continued and expanded surveillance is essential to further identify and locate potential hotspots with Rickettsia spp. of concern.
Project description:Ticks are reservoir hosts of pathogenic Rickettsia in humans and domestic animals. Most pathogenic Rickettsia species belong to the spotted fever group (SFG). The present study aimed to determine the tick species infected with Rickettsia based on the genus-specific 23S ribosomal ribonucleic acid (rRNA), 16S rRNA, and citrate synthase (gltA) gene fragments. A total of 61 tick specimens were selected for molecular assay and 12 samples for sequencing. Phylogenetic analysis was conducted using neighbor-joining and Bayesian inference methods. Argas persicus, Haemaphysalis sulcata, Ha. inermis, and Hyalomma asiaticum were infected by spotted fever Rickettsia. The SFG is the main group of Rickettsia that can be detected in the three genera of ticks from Iran.
Project description:Ticks (n = 663) and fleas (n = 470) collected from domestic animals from southeastern Tunisia were screened for Rickettsia infection using reverse line blot assay. Evidence of spotted fever group Rickettsia was obtained. We detected Rickettsia felis in fleas, Rickettsia massiliae Bar 29 and the Rickettsia conorii Israeli spotted fever strain in ticks, and Rickettsia conorii subsp. conorii and Rickettsia spp. in both arthropods. The sensitivity of the adopted technique allowed the identification of a new association between fleas and R. conorii subsp. conorii species. The presence of these vector-borne Rickettsia infections should be considered when diagnosing this disease in humans in Tunisia.
Project description:The Rickettsia massiliae was firstly detected and identified in Rhipicephalus sanguineus ticks infested on dogs in Taiwan. A total of 1154 Rh. sanguineus ticks collected from 158 dogs of four districts of Tainan city were examined for Rickettsia infection by nested-PCR assay targeting the citrate synthase (gltA) and outer membrane protein B (ompB) genes of Rickettsia. The Rickettsia infection was detected with a general infection rate of 2.77%, and was detected in male, female and nymphal stage with an infection rate of 2.77%, 3.22% and 1.32%, respectively. Phylogenetic relationships were analyzed by comparing the gltA and ompB sequences obtained from 9 Taiwan strains and 16 other strains representing 13 genospecies of Rickettsia. Results revealed that all Taiwan strains were genetically affiliated to the same clades of R. massiliae (spotted fever group) and R. felis (transitional group), and can be discriminated from other genospecies of Rickettsia. This study provides the first evidence of R. massiliae, a pathogenic spotted fever Rickettsia, identified in Rh. sanguineus ticks and highlight the potential threat for the regional transmission of Rickettsia infection among humans in Taiwan.
Project description:The spotted fever group (SFG) of Rickettsia are zoonotic disease-causing pathogens, commonly transmitted by hard ticks to a wide range of hosts, including humans. Rickettsia conorii is the common SFG recognised in India, whereas most of the infections due to other group species go undifferentiated at the species level. Hence, this study was conducted to screen host-seeking ticks in the Western Ghats region, India, for the DNA of SFG Rickettsia. The ticks were collected from Kerala, Goa, and Maharashtra states of India during a survey conducted between November 2017 and January 2018. In total, 288 tick pools were screened for Rickettsia spp. DNA using pan-Rickettsia real-time PCR, and conventional PCR targeting the gltA, OmpA and 17-kDa protein-coding genes. Nucleotide sequences were subjected to phylogenetic analysis using the NCBI BLAST tool to identify submitted sequences with higher homology. Neighbour-joining trees were constructed using the reference sequences of the GenBank database. Overall, Rickettsia spp. DNA was detected in 27.2% (62/228 pools) of host-seeking ticks across the Western Ghats region, with an estimated minimum infection rate of 0.057. Upon phylogenetic analysis, it was identified that the detected sequences were highly similar (> 99% sequence homology) to R. africae, Candidatus R. laoensis and an un-categorised Rickettsia species, and they were widely carried by Haemaphysalis ticks. The current study is the first report of R. africae and Candidatus R. laoensis in ticks in India. Although the pathogenicity of these species is not well documented, they may pose a potential threat to both animal and the human population in this geographical region.