Project description:We report on a non-indigenous adult Hyalomma marginatum tick in Austria carrying the human pathogenic Rickettsia aeschlimannii; presumably introduced as a nymph via migratory birds and completed the moulting within the same year. It was negative for Crimean-Congo haemorrhagic fever virus, but the finding of R. aeschlimannii represents a potential threat for humans due to its zoonotic character. Awareness of invasive tick species and carried pathogens should be improved in central and northern Europe.
Project description:Rickettsia aeschlimannii is a tick-associated human pathogen. We report here the draft genome of R. aeschlimannii strain MC16, isolated from Hyalomma marginatum marginatum ticks collected in Morocco.
Project description:Ticks are important vectors of zoonotic diseases and play a major role in the circulation and transmission of many rickettsial species. The aim of this study was to investigate the carriage of Candidatus Rickettsia tarasevichiae (CRT) in a total of 1168 ticks collected in Inner Mongolia to elucidate the potential public health risk of this pathogen, provide a basis for infectious disease prevention, control and prediction and contribute diagnostic ideas for clinical diseases that present with fever in populations exposed to ticks. A total of four tick species, Haemaphysalis concinna (n = 21), Dermacentor nuttalli (n = 122), Hyalomma marginatum (n = 148), and Ixodes persulcatus (n = 877), were collected at nine sampling sites in Inner Mongolia, China, and identified by morphological and molecular biological methods. Reverse transcription PCR targeting the 16S ribosomal RNA (rrs), gltA, groEL, ompB and Sca4 genes was used to detect CRT DNA. Sequencing was used for pathogen species confirmation. The molecular epidemiological analysis showed that three species of ticks were infected with CRT, and the overall positive rate was as high as 42%. The positive rate of I. persulcatus collected in Hinggan League city was up to 96%, and that of I. persulcatus collected in Hulun Buir city was 50%. The pool positive rates of D. nuttalli and H. marginatum collected in Bayan Nur city and H. concinna collected in Hulun Buir city were 0%, 28% and 40%, respectively. This study revealed the high prevalence of CRT infection in ticks from Inner Mongolia and the first confirmation of CRT detected in H. marginatum in China. The wide host range and high infection rate in Inner Mongolia may dramatically increase the exposure of CRT to humans and other vertebrates. The role of H. marginatum in the transmission of rickettsiosis and its potential risk to public health should be further considered.
Project description:Hyalomma marginatum, a vector for the high-consequence pathogen, the Crimean-Congo hemorrhagic fever virus (CCHFV), needs particular attention due to its impact on public health. Although it is a known vector for CCHFV, its general virome is largely unexplored. Here, we report findings from a citizen science monitoring program aimed to understand the prevalence and diversity of tick-borne pathogens, particularly focusing on Hyalomma ticks in Hungary. In 2021, we identified one adult specimen of Hyalomma marginatum and subjected it to Illumina-based viral metagenomic sequencing. Our analysis revealed sequences of the uncharacterized Volzhskoe tick virus, an unclassified member of the class Bunyaviricetes. The in silico analysis uncovered key genetic regions, including the glycoprotein and the RNA-dependent RNA polymerase (RdRp) coding regions. Phylogenetic analysis indicated a close relationship between our Volzhskoe tick virus sequences and other unclassified Bunyaviricetes species. These related species of unclassified Bunyaviricetes were detected in vastly different geolocations. These findings highlight the remarkable diversity of tick specific viruses and emphasize the need for further research to understand the transmissibility, seroreactivity or the potential pathogenicity of Volzhskoe tick virus and related species.
Project description:Tick-borne Rickettsia spp. have long been known as causative agents for zoonotic diseases. We have previously characterized Rickettsia spp. in different ticks infesting a broad range of hosts in Pakistan; however, knowledge regarding Rickettsia aeschlimannii in Haemaphysalis and Hyalomma ticks is missing. This study aimed to obtain a better understanding about R. aeschlimannii in Pakistan and update the knowledge about its worldwide epidemiology. Among 369 examined domestic animals, 247 (66%) were infested by 872 ticks. Collected ticks were morphologically delineated into three genera, namely, Rhipicephalus, Hyalomma, and Haemaphysalis. Adult females were the most prevalent (number ₌ 376, 43.1%), followed by nymphs (303, 34.74%) and males (193, 22.13%). Overall, genomic DNA samples of 223 tick were isolated and screened for Rickettsia spp. by the amplification of rickettsial gltA, ompA, and ompB partial genes using conventional PCR. Rickettsial DNA was detected in 8 of 223 (3.58%) ticks including nymphs (5 of 122, 4.0%) and adult females (3 of 86, 3.48%). The rickettsial gltA, ompA, and ompB sequences were detected in Hyalomma turanicum (2 nymphs and 1 adult female), Haemaphysalis bispinosa (1 nymph and 1 adult female), and Haemaphysalis montgomeryi (2 nymphs and 1 adult female). These rickettsial sequences showed 99.71-100% identity with R. aeschlimannii and phylogenetically clustered with the same species. None of the tested Rhipicephalus microplus, Hyalomma isaaci, Hyalomma scupense, Rhipicephalus turanicus, Hyalomma anatolicum, Rhipicephalus haemaphysaloides, Rhipicephalus sanguineus, Haemaphysalis cornupunctata, and Haemaphysalis sulcata ticks were found positive for rickettsial DNA. Comprehensive surveillance studies should be adopted to update the knowledge regarding tick-borne zoonotic Rickettsia species, evaluate their risks to humans and livestock, and investigate the unexamined cases of illness after tick bite among livestock holders in the country.
Project description:The finding of immature stages of some Hyalomma spp. feeding on migratory birds in Europe is unexceptional. The reports of adults of Hyalomma in Europe (incl. the British Isles) after successful molting from immatures have increased in recent years. It has been claimed that the warming of the target territory could favor the populations of these invasive ticks. Although evaluations of the impact on health or measures of adaptation are on their way, the climate niches of these species remain undefined, preventing preventive policies. This study delineates such niches for both Hyalomma marginatum (2,729 collection points) and Hyalomma rufipes (2,573 collections) in their distribution area, together with 11,669 points in Europe where Hyalomma spp. are believed to be absent in field surveys. Niche is defined from daily data of temperature, evapotranspiration, soil humidity and air saturation deficit (years 1970-2006). A set of eight variables (annual/seasonal accumulated temperature and vapor deficit) has the maximum discriminatory power separating the niches of both Hyalomma and a negative dataset, with an accuracy near 100%. The sites supporting H. marginatum or H. rufipes seem to be controlled by the joint action of the amount of water in the air (accounting for mortality) and the accumulated temperature (regulating development). The use of accumulated annual temperature as the only variable for predictive purposes of colonization of Hyalomma spp. looks unreliable, as far as values of water in air are excluded.
Project description:Ticks are mites specialized in acquiring blood from vertebrates as their sole source of food and are important disease vectors to humans and animals. Among the specializations required for this peculiar diet, ticks evolved a sophisticated salivary potion that can disarm their host's hemostasis, inflammation, and immune reactions. Previous transcriptome analysis of tick salivary proteins has revealed many new protein families indicative of fast evolution, possibly due to host immune pressure. The hard ticks (family Ixodidae) are further divided into two basal groups, of which the Metastriata have 11 genera. While salivary transcriptomes and proteomes have been described for some of these genera, no tick of the genus Hyalomma has been studied so far. The analysis of 2084 expressed sequence tags (EST) from a salivary gland cDNA library allowed an exploration of the proteome of this tick species by matching peptide ions derived from MS/MS experiments to this data set. We additionally compared these MS/MS derived peptide sequences against the proteins from the bovine host, finding many host proteins in the salivary glands of this tick. This annotated data set can assist the discovery of new targets for anti-tick vaccines as well as help to identify pharmacologically active proteins.
Project description:Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.
Project description:The genus Hyalomma belongs to the Ixodidae family and includes many tick species. Most species in this genus are African species, but two of them, Hyalomma lusitanicum and Hyalomma marginatum, are also found in Europe and, owing to their morphological similarity, it is very difficult to tell them apart. This is a major concern because their phenology and vector capacities are quite different. Moreover, they share many habitats and both are currently spreading to new areas, probably due to climate change and animal/human movements. In this study, we review the described ecology of the two species and provide further interesting data on H. lusitanicum based on the authors' experience, which could be useful in assessing the risk they pose to humans and animals.