Emergence and patterning of the five cell types of the Zea mays anther locule.
Ontology highlight
ABSTRACT: One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants, the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis; however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium, the somatic tissues consist of four concentric cell layers that surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild-type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over 30 days of wild-type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2'-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain.
SUBMITTER: Kelliher T
PROVIDER: S-EPMC3024885 | biostudies-literature | 2011 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA