Unknown

Dataset Information

0

Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.


ABSTRACT: The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ?2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.

SUBMITTER: Wall CE 

PROVIDER: S-EPMC3026562 | biostudies-literature | 2011 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.

Wall Christopher E CE   Cozza Steven S   Riquelme Cecilia A CA   McCombie W Richard WR   Heimiller Joseph K JK   Marr Thomas G TG   Leinwand Leslie A LA  

Physiological genomics 20101102 2


The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of bi  ...[more]

Similar Datasets

| S-EPMC3870669 | biostudies-literature
| S-EPMC3173347 | biostudies-literature
| S-EPMC5597892 | biostudies-literature
| S-EPMC3383835 | biostudies-literature
| S-EPMC4662595 | biostudies-literature
| S-EPMC3634432 | biostudies-literature
| S-EPMC5771569 | biostudies-literature
| S-EPMC4855019 | biostudies-literature
| S-EPMC6157680 | biostudies-literature
| S-EPMC6183465 | biostudies-literature