Project description:Melanoma is the most aggressive skin cancer; there is no cure in advanced stages. Identifying molecular participants in melanoma progression may provide useful diagnostic and therapeutic tools. FK506 binding protein 51 (FKBP51), an immunophilin with a relevant role in developmental stages, is highly expressed in melanoma and correlates with aggressiveness and therapy resistance. We hypothesized a role for FKBP51 in melanoma invasive behaviour. FKBP51 promoted activation of epithelial-to-mesenchymal transition (EMT) genes and improved melanoma cell migration and invasion. In addition, FKBP51 induced some melanoma stem cell (MCSC) genes. Purified MCSCs expressed high EMT genes levels, suggesting that genetic programs of EMT and MCSCs overlap. Immunohistochemistry of samples from patients showed intense FKBP51 nuclear signal and cytoplasmic positivity for the stem cell marker nestin in extravasating melanoma cells and metastatic brains. In addition, FKBP51 targeting by small interfering RNA (siRNA) prevented the massive metastatic substitution of liver and lung in a mouse model of experimental metastasis. The present study provides evidence that the genetic programs of cancer stemness and invasiveness overlap in melanoma, and that FKBP51 plays a pivotal role in sustaining such a program.
Project description:BackgroundFK506 binding protein 51 (FKBP5) is a co-chaperone regulator of the glucocorticoid receptor (GR). Recent studies have reported increased FKBP5 mRNA in the circulation from patients with Cushing disease (CD) which returned to comparable levels seen in healthy controls following successful trans-nasal trans-sphenoidal (TNTS) surgical corticotroph tumor removal. However, the expression of circulating FKBP5 mRNA levels in other pituitary tumor subtypes and its specificity to corticotroph tumors is unknown.MethodsPre-operative blood was collected from consecutive patients undergoing TNTS for pituitary tumors (n = 57) at our center between 2015 and 2019. Total RNA was isolated from whole blood using RiboPure blood RNA isolation kit and real-time qPCR was used to quantitate circulating FKBP5 mRNA expression.ResultsConsistent with the prior report, higher circulating FKBP5 mRNA levels were observed in 20 patients with CD prior to surgical tumor removal, compared to 21 healthy controls (p < 0.0005) and compared to 8 patients harboring gonadotroph pituitary tumors (p < 0.05) and 6 patients with silent corticotroph pituitary tumors (p < 0.05). However, circulating FKBP5 mRNA levels were higher in 10 patients with prolactin (PRL)-secreting pituitary tumors compared to healthy controls (p < 0.05), and did not differ between patients with CD and patients with growth hormone secreting tumors (GH-omas).ConclusionsAlthough we confirm that circulating FKBP5 mRNA is higher in patients with corticotroph tumors compared to healthy subjects, measurement of circulating FKBP5 does not appear to be helpful to distinguish corticotroph tumors from other pituitary tumor sub-types.
Project description:FK506 binding protein (FKBP)-51 and FKBP52 act as molecular chaperones to control glucocorticoid receptor (GR) sensitivity. Dysregulation of proteins involved in GR-mediated signaling can lead to maladaptive stress response and aging-related cognitive decline. As HIV infection is related to chronic stress, we hypothesized that altered cortical expression of these proteins was associated with HIV-associated neurocognitive disorders (HAND). We used quantitative immunohistochemistry to assess expression levels of these proteins in the mid-frontal gyrus of 55 HIV-infected subjects free of cerebral opportunistic diseases compared to 20 age-matched non-HIV controls. The immunoreactivity normalized to the neuroanatomic area measured (IRn) for FKBP51 was increased in HIV subjects both in the cortex and subcortical white matter (p < 0.0001, U test), while no significant alterations were observed for GR or FKBP52. Notably, the cortical FKBP51 IRn was higher in HAND subjects than in cognitively normal HIV subjects (p = 0.02, U test). There was also a trend for increasing cortical FKBP51 IRn with the increasing severity of HAND (p = 0.08, Kruskal-Wallis test). No significant changes in FKBP51 IRn were found with respect to hepatitis C virus infection, lifetime methamphetamine use, or antiretroviral treatment in HIV subjects. In conclusion, the increased cortical expression of FKBP51 (an inhibitor for GR activity) might represent negative feedback in an attempt to reduce GR sensitivity in the setting of chronic stress-induced elevation of GR-mediated signaling inherent in HIV infection. The further increased FKBP51 expression might lead to maladaptive stress response and HAND.
Project description:The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Project description:BackgroundSleep disturbance is an outcome of multiple factors including environmental and genetic influences. Job stress, a complex environmental factor, likely affects sleep quality, significantly reducing the quality of life of workers. Additionally, FK506 binding protein 51 (FKBP5) may be a pathogenic factor for sleep disturbance as it regulates hypothalamic-pituitary-adrenal (HPA) axis activity, where HPA axis has been found to be involved in the regulation mechanism of sleep and stress response.ObjectivesThe main aim of this study was to investigate the association between job stress and FKBP5 gene polymorphism as well as their interaction with sleep disturbance in Chinese workers; to date, these relationships have not been explored.MethodsThis is a cross-sectional study. A total of 675 railway workers (53.8% male) completed a short Effort-Reward Imbalance questionnaire and the Pittsburgh Sleep Quality Index. The SNaPshot single nucleotide polymorphism (SNP) assay was carried out by screening for FKBP5 SNPs in every participant. Generalized multifactor dimensionality reduction (GMDR) was used to identify the strongest G×E interaction combination.ResultsThe findings showed that job stress was significantly associated with sleep disturbance; specifically, scores on the PSQI subscales (sleep disturbance, sleep medication, and daytime dysfunction) exhibited significant differences between the two job stress groups (X2 = 18.10, p = 0.01). Additionally, the FKBP5 SNP rs1360780-TT (adjusted odds ratio [AOR] = 4.98, 95% confidence interval [CI] = 2.80-8.84) and rs3800373-CC genotype (AOR = 2.06, CI = 1.10-3.86) were associated with an increased risk of sleep disturbance. Job stress and rs1360780 and rs3800373 variants showed a high-dimensional interaction with sleep disturbance as determined by the GMDR model.ConclusionThe FKBP5 gene may increase susceptibility to job stress and result in sleep disturbance, especially in the presence of negative work-related events. These findings contribute to the field of sleep disturbance prevention and treatment.
Project description:The parent-child attachment relationship plays an important role in the development of the infant's stress regulation system. However, genetic and epigenetic factors such as FK506 binding protein 51 (FKBP5) genotype and DNA methylation have also been associated with hypothalamus-pituitary-adrenal axis functioning. In the current study, we examined how parent-child dyadic regulation works in concert with genetic and epigenetic aspects of stress regulation. We study the associations of attachment, extreme maternal insensitivity, FKBP5 single nucleotide polymorphism 1360780, and FKBP5 methylation, with cortisol reactivity to the Strange Situation Procedure in 298 14-month-old infants. The results indicate that FKBP5 methylation moderates the associations of FKBP5 genotype and resistant attachment with cortisol reactivity. We conclude that the inclusion of epigenetics in the field of developmental psychopathology may lead to a more precise picture of the interplay between genetic makeup and parenting in shaping stress reactivity.
Project description:Gliomas aberrantly express programmed cell death ligand-1 (PD-L1), which has a pivotal role in immunoevasion. The splicing isoform of FKBP5, termed FKBP51s, is a PD-L1 foldase, assisting the immune checkpoint molecule in maturation and expression on the plasma membrane. The concept that PD-L1 supports tumor-intrinsic properties is increasingly emerging. The aim of the present work was to confirm the pro-tumoral effect of PD-L1 on human glioma cell survival, stemness capacity and resistance, and to address the issue of whether, by targeting its foldase either chemically or by silencing, the aggressive tumor features could be attenuated. PD-L1-depleted glioma cells have a reduced threshold for apoptosis, while PD-L1 forced expression increases resistance. Similar results were obtained with FKBP51s modulation. The ability of PD-L1 to counteract cell death was hampered by FKBP51s silencing. PD-L1 expression was particularly high in glioma cells with a cancer-stem-cell profile. Moreover, PD-L1 sustained the spheroid formation capability of glioma cells. Targeting of FKBP51s by small-interfering RNA (siRNA) or the specific inhibitor SAFit2, reduced the number of formed spheroids, along with PD-L1 expression. Finally, in an orthotopic mouse model of glioblastoma, daily treatment with SAFit2 significantly reduced tumor PD-L1 expression, and tumor growth. In treated mice, caspase-3 activation and reduced vimentin expression were observed in excised tumors. In conclusion, targeting of FKBP51s hampers PD-L1 and its pro-tumoral properties, thereby affecting the self-renewal and growth capacities of glioblastoma cells in vitro and in vivo.
Project description:Scaffold proteins are crucial regulators of signaling networks, and their abnormal expression may favor the development of tumors. Among the scaffold proteins, immunophilin covers a unique role as 'protein-philin' (Greek 'philin' = friend) that interacts with proteins to guide their proper assembly. The growing list of human syndromes associated with the immunophilin defect underscores the biological relevance of these proteins that are largely opportunistically exploited by cancer cells to support and enable the tumor's intrinsic properties. Among the members of the immunophilin family, the FKBP5 gene was the only one identified to have a splicing variant. Cancer cells impose unique demands on the splicing machinery, thus acquiring a particular susceptibility to splicing inhibitors. This review article aims to overview the current knowledge of the FKBP5 gene functions in human cancer, illustrating how cancer cells exploit the scaffolding function of canonical FKBP51 to foster signaling networks that support their intrinsic tumor properties and the spliced FKBP51s to gain the capacity to evade the immune system.
Project description:AimTo perform a mutation analysis of FK506 binding protein-like (FKBPL) in patients with azoospermia.MethodsDNA samples were isolated from the peripheral blood of 30 azoospermic male patients with normal 46 XY karyotype and 10 healthy controls. Multiplex polymerase chain reaction assays were used to evaluate Y microdeletions, and the patients without deletions were further analyzed. Sanger sequencing was used for mutation analysis.ResultsA heterozygous adenine to guanine substitution was observed at position c.28 (c.28A>G) (one patient), guanine to adenine substitution at c.90 (c.90G>A) (three patients), and a novel insertion mutation of TCTCATAAGTCT at c. 229_240dup (two patients), all in FKBPL exon 2. Furthermore, four different benign variants were observed in the same gene.ConclusionOur study supports the literature on the etiologic effects of changes on autosomal chromosomes and highlights the importance of molecular analysis of all known and unknown genes that could be involved in male sexual development and function.
Project description:Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta).To assess the expression and function of FKBP10 in IPF.We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-?1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF.FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-?1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and ?-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF.FKBP10 might be a novel drug target for IPF.