Ontology highlight
ABSTRACT: Purpose
We investigated whether tumors from diagnostic biopsies of primary rhabdomyosarcoma (RMS) contain relevant prognostic information in the form of gene expression signatures that can be used to model and predict outcome of patients.Patients and methods
A 22,000-probe set microarray was used to evaluate 120 RMS specimens and correlate gene expression patterns to survival. Multivariate gene expression models or metagenes were developed using cross-validated Cox regression proportional hazards modeling and were evaluated using Kaplan-Meier analysis.Results
A 34-metagene, based on expression patterns of 34 genes, was highly predictive of outcome. It was not highly correlated with individual clinical risk factors such as patient age, stage, tumor size, or histology. However, it was correlated with a risk classification used by the Children's Oncology Group and the biologic subsets of alveolar histology tumors.Conclusion
These data support further evaluation of RMS metagenes to discriminate patients with good prognosis from those with poor prognosis, with the potential to direct risk-adapted therapy.
SUBMITTER: Davicioni E
PROVIDER: S-EPMC3040045 | biostudies-literature | 2010 Mar
REPOSITORIES: biostudies-literature
Davicioni Elai E Anderson James R JR Buckley Jonathan D JD Meyer William H WH Triche Timothy J TJ
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 20100201 7
<h4>Purpose</h4>We investigated whether tumors from diagnostic biopsies of primary rhabdomyosarcoma (RMS) contain relevant prognostic information in the form of gene expression signatures that can be used to model and predict outcome of patients.<h4>Patients and methods</h4>A 22,000-probe set microarray was used to evaluate 120 RMS specimens and correlate gene expression patterns to survival. Multivariate gene expression models or metagenes were developed using cross-validated Cox regression pro ...[more]