Unknown

Dataset Information

0

Analysis of AML Genes in Dysregulated Molecular Networks.


ABSTRACT: BACKGROUND:Identifying disease causing genes and understanding their molecular mechanisms are essential to developing effective therapeutics. Thus, several computational methods have been proposed to prioritize candidate disease genes by integrating different data types, including sequence information, biomedical literature, and pathway information. Recently, molecular interaction networks have been incorporated to predict disease genes, but most of those methods do not utilize invaluable disease-specific information available in mRNA expression profiles of patient samples. RESULTS:Through the integration of protein-protein interaction networks and gene expression profiles of acute myeloid leukemia (AML) patients, we identified subnetworks of interacting proteins dysregulated in AML and characterized known mutation genes causally implicated to AML embedded in the subnetworks. The analysis shows that the set of extracted subnetworks is a reservoir rich in AML genes reflecting key leukemogenic processes such as myeloid differentiation, CONCLUSION:We showed that the integrative approach both utilizing gene expression profiles and molecular networks could identify AML causing genes most of which were not detectable with gene expression analysis alone due to their minor changes in mRNA.

SUBMITTER: Lee E 

PROVIDER: S-EPMC3041561 | biostudies-literature | 2009 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Analysis of AML Genes in Dysregulated Molecular Networks.

Lee Eunjung E   Jung Hyunchul H   Radivojac Predrag P   Kim Jong-Won JW   Lee Doheon D  

Summit on translational bioinformatics 20090301


<h4>Background</h4>Identifying disease causing genes and understanding their molecular mechanisms are essential to developing effective therapeutics. Thus, several computational methods have been proposed to prioritize candidate disease genes by integrating different data types, including sequence information, biomedical literature, and pathway information. Recently, molecular interaction networks have been incorporated to predict disease genes, but most of those methods do not utilize invaluabl  ...[more]

Similar Datasets

| S-EPMC2745689 | biostudies-literature
| S-EPMC3626793 | biostudies-literature
| S-EPMC10507674 | biostudies-literature
| S-EPMC9266409 | biostudies-literature
| S-EPMC9212148 | biostudies-literature
| S-EPMC8649938 | biostudies-literature
2013-09-27 | PXD000385 | Pride
| S-EPMC7518694 | biostudies-literature
| S-EPMC5356478 | biostudies-literature
| S-EPMC7434757 | biostudies-literature