Non-cell-autonomous planar cell polarity propagation in the auditory sensory epithelium of vertebrates.
Ontology highlight
ABSTRACT: Sensory epithelia of the inner ear require a coordinated alignment of hair cell stereociliary bundles as an essential element of mechanoreceptive function. Hair cell bundle alignment is mediated by core planar cell polarity (PCP) proteins, such as Vangl2, that localize asymmetrically to the circumference of the cell near its apical surface. During early phases of cell orientation in the chicken basilar papilla (BP), Vangl2 is present at supporting cell junctions that lie orthogonal to the polarity axis. Several days later, there is a striking shift in the Vangl2 pattern associated with hair cells that reorient towards the distal (apical) end of the organ. How the localization of PCP proteins transmits planar polarity information across the developing sensory epithelium remains unclear. To address this question, the normal asymmetric localization of Vangl2 was disrupted by overexpressing Vangl2 in clusters of cells. The BP was infected with replication-competent retrovirus encoding Vangl2 prior to hair cell differentiation. Virus-infected cells showed normal development of individual stereociliary bundles, indicating that asymmetry was established at the cellular level. Yet, bundles were misoriented in ears infected with Vangl2 virus but not Wnt5a virus. Notably, Vangl2 misexpression did not randomize bundle orientations but rather generated larger variations around a normal mean angle. Cell clusters with excess Vangl2 could induce non-autonomous polarity disruptions in wild-type neighboring cells. Furthermore, there appears to be a directional bias in the propagation of bundle misorientation that is towards the abneural edge of the epithelium. Finally, regional bundle reorientation was inhibited by Vangl2 overexpression. In conclusion, ectopic Vangl2 protein causes inaccurate local propagation of polarity information, and Vangl2 acts in a non-cell-autonomous fashion in the sensory system of vertebrates.
SUBMITTER: Sienknecht UJ
PROVIDER: S-EPMC3052742 | biostudies-literature | 2011 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA